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Abstract. We present a comprehensive analysis of singular vector and sin-

gular subspace perturbations in the context of the signal plus random Gauss-
ian noise matrix model. Assuming a low-rank signal matrix, we extend the

Davis-Kahan-Wedin theorem in a fully generalized manner, applicable to any

unitarily invariant matrix norm, extending previous results of O’Rourke, Vu
and the author. We also obtain the fine-grained results, which encompass

the `8 analysis of singular vectors, the `2,8 analysis of singular subspaces, as

well as the exploration of linear and bilinear functions related to the singu-
lar vectors. Moreover, we explore the practical implications of these findings,

in the context of the Gaussian mixture model and the submatrix localization

problem.

1. Introduction

Matrix perturbation theory has emerged as a central and foundational subject
within various disciplines, including probability, statistics, machine learning, and
applied mathematics. Perturbation bounds, which quantify the influence of small
noise on the spectral parameters of a matrix, are of paramount importance in
numerous applications such as matrix completion [30, 31, 50], principal component
analysis (PCA) [49], and community detection [71,73], to mention a few. This paper
aims to present a comprehensive analysis establishing perturbation bounds for the
singular vectors and singular subspaces of a low-rank signal matrix perturbed by
additive random Gaussian noise.

Consider an unknown N ˆ n data matrix A. Suppose we cannot observe A

directly but instead have access to a corrupted version rA given by

rA :“ A` E, (1)

where E represents the noise matrix. In this paper, we focus on real matrices, and
the extension to complex matrices is straightforward.

Assume that the N ˆ n data matrix A has rank r ě 1. The singular value
decomposition (SVD) of A takes the form A “ UDV T , where D “ diagpσ1, . . . , σrq
is a diagonal matrix containing the non-zero singular values σ1 ě σ2 ě ¨ ¨ ¨ ě σr ą 0
of A; the columns of the matrices U “ pu1, . . . , urq and V “ pv1, . . . , vrq are the
orthonormal left and right singular vectors of A, respectively. In other words, ui
and vi are the left and right singular vectors corresponding to σi. It follows that
UTU “ V TV “ Ir, where Ir is the r ˆ r identity matrix. For convenience we

will take σr`i “ 0 for all i ě 1. Denote the SVD of rA given in (1) similarly by
rA “ rU rDrV T, where the diagonal entries of rD are the singular values rσ1 ě rσ2 ě
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¨ ¨ ¨ ě rσmintN,nu ě 0, and the columns of rU and rV are the orthonormal left and
right singular vectors, denoted by rui and rvi, respectively.

The primary focus of this paper is the singular subspaces that are spanned by
the leading singular vectors. For 1 ď k ď r, let us denote

Uk :“ Spantu1, . . . , uku, Vk :“ Spantv1, . . . , vku,

rUk :“ Spantru1, . . . , ruku, rVk :“ Spantrv1, . . . , rvku.

With a slight abuse of notation, we also use Uk “ pu1, . . . , ukq to represent the

singular vector matrix. We employ the notation Vk, rUk, rVk in a similar manner. Let
PUk

“ UkU
T
k (resp. PVk

“ VkV
T
k ) be the orthogonal projection on the subspace Uk

(resp. Vk). Denote the orthogonal complement of a subspace W as WK.
The classical perturbation bounds related to the changes in singular values and

singular vectors are detailed below. The matrix norm ~ ¨ ~ on RNˆn is said to be
unitarily invariant if ~A~ “ ~UAV ~ for all orthogonal matrices U P RNˆN and
V P Rnˆn. In addition, we always consider the norm ~ ¨ ~ to be normalized. This
means that the norm always satisfies ~A~ “ 1 if A has its p1, 1q entry equal to 1
and all other entries equal to zero. A more thorough exploration of the properties
of unitarily invariant matrix norms can be found in Section 5.1.

Denote diagpσi´ rσiq “ diagpσ1´ rσ2, ¨ ¨ ¨ , σmintN,nu´ rσmintN,nuq. This represents
the difference in singular values between A and A ` E. The perturbations or
changes in the singular values of A and A ` E are provided by Mirsky’s theorem
(see Theorem 4.11 in Chapter IV from [68]).

Theorem 1 (Mirsky). For any unitarily invariant norm ~ ¨ ~,

~diagpσi ´ rσiq~ ď ~E~.

When applied to the operator norm and eigenvalues of Hermitian matrices, the
inequality stated can be recognized as the Weyl’s inequality (see [21, Corollary
III.2.6]).

The differences between subspaces Uk and rUk of A and A`E can be quantified

by calculating the separation between Uk and rUk. This is achieved using k principal
angles, defined as 0 ď θ1 ď ¨ ¨ ¨ ď θk ď π{2. These angles measure the distance
between the two subspaces. For a detailed definition and further discussion of this
concept, please refer to Section 5.2. Denote

sin =pUk, rUkq :“ diagpsin θ1, ¨ ¨ ¨ , sin θkq.

Define sin =pVk, rVkq analogously. The classical perturbation bound, which concerns
the variations in the eigenspaces for symmetric matrices A and A`E, was initially
investigated by Davis and Kahan [40]. Further generalizations to singular subspaces
of rectangular matrices are encapsulated in Wedin’s theorem (Eq. (3.11) from [76]).

Theorem 2 (Wedin [76]). If δ̂k :“ σk ´ rσk`1 ą 0, then for any unitarily invariant
norm ~ ¨ ~,

~ sin =pUk, rUkq~ ď
maxt~PUKk EP rVk

~,~PV Kk E
TP

rUk
~u

δ̂k
. (2)

The same result also holds for ~ sin =pVk, rVkq~.
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In the context of an unitarily invariant norm ~ ¨ ~, there exist several well-

established methods to quantify the separation between Uk and rUk. These include
using

~ sin =pUk, rUkq~, ~PUk
´ P

rUk
~ and min

OPOkˆk
~UkO ´ rUk~.

In Section 5.2, we provide a detailed discussion about the equivalence or relation-
ships among these various methods.

The traditional bounds previously mentioned offer precise estimates, catering
to worst-case scenarios. However, modern applications often operate under the
premise that the data matrix A satisfies specific structural assumptions. A typical
case is when A has a low rank r, where r remains constant or experiences slow
growth relative to N and n. Moreover, the noise matrix E is generally assumed to
be random.

In light of these additional assumptions about the data A and the noise E, we
foresee significant enhancements over the traditional results. Our principal objec-
tive is to derive a stochastic variant of Wedin’s theorem, under the assumption that
A is low-rank and E is random. This paper builds upon the previous works [63,64]
by O’Rourke, Vu and the author, which initially stemmed from Vu’s work [72].
Specifically, within the framework established in [64], we present a comprehen-
sive extension of the Davis-Kahan-Wedin sin Θ theorem. This extension applies to
any unitarily invariant norm and operates under the assumption that E contains
independent and identically distributed (i.i.d.) standard Gaussian entries. Addi-
tionally, we have enhanced the r-dependence in the bounds obtained from [64] and
have eased some technical assumptions. A detailed discussion of this extension can
be found in Section 2.1.

To extend the results beyond the scenario where E comprises i.i.d. Gaussian
entries, we utilize a methodology similar to that in our previous work [63] and
derive analogous perturbation of singular values and singular subspaces. Notably,
these results hold true for random noise of any specific structure, provided the noise
induces a negligible effect on the singular subspaces of the matrix A. Furthermore,
these results alleviate the trio-concentration assumption for E imposed in our pre-
vious work [63]. Compared to the prior analysis where E is a Gaussian matrix, the
bounds now include an additional term, which may not be optimal. Nonetheless, we
posit that the generalized setting on E offers wider applicability in many practical
scenarios. These findings are presented at the end of Section 2.1.

There is currently a surging interest in the field of `8 analysis, also known as
entrywise analysis of eigenvectors and singular vectors. This dynamic research area
is dedicated to deriving rigorous bounds, such as those found in `8 analysis [2, 20,
36, 43, 45, 84] for eigenvectors or singular vectors, or `2,8 analysis for eigenspaces
or singular subspaces [1, 4, 27, 32, 55], in relation to perturbed matrix models. The
driving force behind these pursuits lies in the substantial impact and wide-ranging
applications these analyses offer in statistics and machine learning.

Inspired by recent advancements, we have derived precise `8 bounds for the
perturbed singular vectors and the `2,8 bounds for the perturbed singular subspaces
of A`E. Beyond these specific bounds, we have also established results pertaining
to the generalized components - also known as linear and bilinear forms - of the
perturbed singular vectors and singular subspaces. We further investigate the `2,8
bounds on the perturbed singular vectors, taking into account the weighting by
their respective singular values. These new results are presented in Section 2.2.
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In Section 4, we demonstrate the practical applications of our theoretical find-
ings within two statistical models: the Gaussian Mixture Model and the submatrix
localization problem. Our main goal is to use these results to examine how well
spectral algorithms work and provide clear, straightforward proofs of their perfor-
mance.

Organization: The paper is organized as follows. Section 2 presents our new ma-
trix perturbation results. Notably, Section 2.1 extends Wedin’s sin Θ theorem to
stochastic versions suitable for arbitrary unitarily invariant norms. Results focus-
ing on the `8 and `2,8 norms of singular vectors and subspaces are consolidated in
Section 2.2. Section 3 provides a concise survey of related literature. Applications
of our perturbation results are demonstrated through the analysis of spectral al-
gorithms for the Gaussian Mixture Model and the submatrix localization problem,
discussed in Sections 4.1 and 4.2, respectively. Preliminaries and basic tools em-
ployed in our proofs are introduced in Section 5, which also includes an overview
of the proofs for our main results. The subsequent sections, along with the appen-
dices, are dedicated to the detailed proofs of our main results, as well as the proofs
of basic tools related to them.

Notation: For a vector v “ pv1, ¨ ¨ ¨ , vnq P Rn, the following norms are frequently

used: }v} “
a

řn
i“1 v

2
i and }v}8 “ maxi |vi|. Also, }v}0 is the number of non-zero

elements in v. For a real matrix M , }M} denotes its operator norm, while }M}F
represents its Frobenius norm. The term }M}max refers to the largest absolute value
among its entries, and }M}2,8 indicates the maximum length of its rows. For a set
S, let 1S be the indicator function of this set. For two functions fpnq, gpnq ą 0, we
use the asymptotic notations fpnq " gpnq and gpnq “ opfpnqq if fpnq{gpnq Ñ 8

as n Ñ 8. The notation fpnq “ Opgpnqq and fpnq À gpnq are used when there
exists some constant C ą 0 such that fpnq ď Cgpnq for sufficiently large n. If
fpnq “ Opgpnqq and gpnq “ Opfpnqq, we denote fpnq — gpnq. The set of n ˆ n
orthogonal matrices is denoted by Onˆn.

2. New results on the matrix perturbation bounds

2.1. Stochastic Wedin’s sin Θ theorem. We first generalize the previous results
in [63,64] to an arbitrary unitarily invariant norm ~ ¨ ~. Denote by sin =pU, V q the
diagonal matrix whose diagonal entries are sin θi’s, where θi represents the principal
angles between subspaces U and V . A detailed definition can be found in Section
5.2.

For any 1 ď k ď s ď r, denote

Uk,s :“ Spantuk, . . . , usu, rUk,s :“ Spantruk, . . . , rusu, PUk,s
“ Uk,sU

T
k,s

and analogously for Vk,s, rVk,s and PVk,s
. Denote

Dk,s “ diagpσk, ¨ ¨ ¨ , σsq

and analogously for rDk,s. If k “ 1, we simply useDs, rDs, Us, rUs, PUs
and Vs, rVs, PVs

.
The spectral gap (or separation)

δk :“ σk ´ σk`1,

which refers to the difference between consecutive singular values of a matrix, will
play a key role in the following results.
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Theorem 3 (Unitarily invariant norms: simplified asymptotic version). Let A and
E be N ˆn real matrices, where A is deterministic with rank r ě 1 and the entries
of E are i.i.d. standard Gaussian random variables. Let ~ ¨ ~ be any normalized,

unitarily invariant norm. Consider 1 ď k ď r such that δk Á r
a

r ` logpN ` nq.

Denote k0 “ mintk, r ´ ku. Then with probability 1´ pN ` nq´C for some C ą 0,

~ sin =pUk, rUkq~ À
a

kk0

a

r ` logpN ` nq

δk
`
~PUKEP rVk

~ ` ~PV KE
TP

rUk
~

σk
. (3)

Specially, for the operator norm, we have with probability 1´ pN ` nq´C ,

} sin =pUk, rUkq} À
?
k

a

r ` logpN ` nq

δk
1tk‰ru `

}E}

σk
. (4)

The same conclusion also holds for sin =pVk, rVkq.

This bound serves as a comprehensive generalization of the classical Wedin’s
bound in Theorem 2 when applied to the context of random noise. When k “ r, the
first term on the right-hand side of (3) vanishes, then (3) is essentially consistent
with the Wedin’s bound in Theorem 2. When k ă r, it is worth noting that
PUKk “ PUk`1,r

`PUK and PV Kk “ PVk`1,r
`PV K . Using Wedin’s bound (2), one can

deduce that

~ sin =pUk, rUkq~

ď
~PUk`1,r

EP
rVk
~ ` ~PVk`1,r

ETP
rUk
~

δ̂k
`
~PUKEP rVk

~ ` ~PV KE
TP

rVk
~

δ̂k
. (5)

In the setting of a low-rank signal matrix A and random noise E, our result (3)
improves the second term on the right-hand side of (5) by replacing the denom-

inator δ̂k “ σk ´ rσk`1 with a usually much larger quantity σk. Additionally, we
demonstrate that the first term on the right-hand side of (5) is essentially Cprq{δk,
where Cprq À r3{2.

For the operator norm, (4) represents an improvement over the previous result
in [63] by O’Rourke, Vu and the author in terms of the dependence on the rank r.
In particular, when k “ 1, we obtain that with probability 1´ pN ` nq´C ,

sin =pu1, ru1q À

a

r ` logpN ` nq

δ1
`
}E}

σ1
. (6)

We believe (6) is optimal up to the dependence on the constants.
In practice, computing the second term on the right-hand side of (3) precisely

is challenging due to the dependence among E,P
rUk
, P

rVk
. Therefore, for practical

applications, a simplified bound below offers convenience.

Corollary 4. Under the assumptions of Theorem 3, the following holds with prob-
ability 1´ pN ` nq´C ,

~ sin =pUk, rUkq~ À
a

kk0

a

r ` logpN ` nq

δk
` k

}E}

σk
. (7)

Theorem 3 follows immediately from the next general and non-asymptotic result.
For ease of notation, denote σ0 :“ 8 and δ0 :“ 8. We define

χpbq :“ 1`
1

4bpb´ 1q
for b ě 2.
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Theorem 5 (Unitarily invariant norms: Gaussian noise). Let A and E be N ˆ

n real matrices, where A is deterministic and the entries of E are i.i.d. stan-
dard Gaussian random variables. Let ~ ¨ ~ be any normalized, unitarily invari-
ant norm. Assume A has rank r ě 1. Let K ą 0 and b ě 2. Denote η :“
11b2

pb´1q2

a

2plog 9qr ` pK ` 7q logpN ` nq. Assume p
?
N`

?
nq2 ě 32pK`7q logpN`

nq ` 64plog 9qr. Consider 1 ď r0 ď r such that σr0 ě 2bp
?
N `

?
nq ` 80bηr and

δr0 ě 75χpbqηr. For any 1 ď k ď s ď r0, if mintδk´1, δsu ě 75χpbqηr, then

~ sin =pUk,s, rUk,sq~ ď6
?

2
pb` 1q2

pb´ 1q2

a

mints´ k ` 1, r ´ s` k ´ 1u
η
?
s´ k ` 1

mintδk´1, δsu

` 2
~PUKEP rVk,s

‘ PV KE
TP

rUk,s
~

σs
(8)

with probability at least 1´ 20pN ` nq´K .
Specially, for the operator norm, we have with probability at least 1´20pN`nq´K

} sin =pUk,s, rUk,sq} ď 3
?

2
pb` 1q2

pb´ 1q2
1ts´k`1‰ru

η
?
s´ k ` 1

mintδk´1, δsu
` 2

}E}

σs
.

The same conclusion also holds for sin =pVk,s, rVk,sq.

Remark 6. Throughout the proofs, we work on the event that }E} ď 2p
?
N `

?
nq. Lemma 32 below guarantees this event holds with very high probability. In

Theorem 5, the parameter b ě 2 represents the signal-to-noise ratio, and in the
proof, we ensure that σr0{}E} ě b. The parameter b, which could depend on
N and n, could account for a particularly strong signal. We have selected certain

constants and expressions such as 80, 75χpbq, and pb`1q2

pb´1q2 for the sake of convenience

in our computations while our primary objective was not to optimize these constants
within the proof. It is also feasible to conduct work on the event that }E} ď

p1 ` ε1qp
?
N `

?
nq, and assume b ě 1 ` ε2 for ε1, ε2 ą 0. By following the same

proof, one can arrive at refined constants and bounds.

Remark 7. Building upon the work of [64], which focused on bounds within oper-
ator norms, Theorem 5 achieves an improvement in terms of the dependency on r.
Moreover, Theorem 5 eliminates a restrictive condition in [64], which requires the
distinct singular values among σk, ¨ ¨ ¨ , σs to be separated by a distance of order
r2
a

logpN ` nq. This condition, often challenging to verify for practical applica-
tions, is no longer necessary in our theorem.

To go beyond the i.i.d. Gaussian noise matrix, we record the following results on
the perturbation of singular values and singular subspaces that is obtained using a
similar approach as in the previous work by O’Rourke, Vu and the author [63]. In
particular, these results remain valid for random noise of any specific structure, as
long as the noise has a negligible effect on the singular subspaces of matrix A.

Theorem 8 (Singular value bounds: general noise). Assume A has rank r and E
is random. Let 1 ď k ď r. Consider any ε P p0, 1q.

‚ If there exists t ą 0 such that }UTk EVk} ď t with probability at least 1´ ε,
then we have, with probability at least 1´ ε,

rσk ě σk ´ t. (9)
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‚ If there exist L,B ą 0 such that }UTEV } ď L and }E} ď B with probability
at least 1´ ε, then we have, with probability at least 1´ ε,

rσk ď σk ` 2
?
k
B2

rσk
` k

B3

rσ2
k

` L. (10)

Theorem 9 (Singular subspace bounds: general noise). Assume A has rank r and
E is random. Let 1 ď k ď r. For ε ą 0, assume there exist L,B ą 0 such that
}UTEV } ď L and }E} ď B with probability at least 1 ´ ε. Furthermore, assume
δk “ σk ´σk`1 ě 2L. Then for any normalized, unitarily invariant norm ~ ¨ ~, the
following holds with probability at least 1´ ε,

~ sin =pUk, rUkq~ ď 2
a

kmintk, r ´ ku

ˆ

L

δk
` 2

B2

δkσk

˙

` 2k
B

σk
.

More specifically, for the operator norm,

} sin =pUk, rUkq} ď 2
?
k

ˆ

L

δk
` 2

B2

δkσk

˙

1tkăru ` 2
B

σk
.

The same result also holds for sin =pVk, rVkq.

To apply Theorems 8 and 9, it is necessary to obtain effective bounds on }E} and
}UTEV }. In general, matrix concentration inequalities (refer to [69] for example)
can provide good upper bounds on }E} for random noise E with heteroskedastic
entries and even complex correlations among the entries. On the other hand, UTEV
is an r ˆ r matrix, and }UTEV } typically depends on r. Bounds on }UTEV }
can be obtained by applying concentration inequalities. In order to facilitate the
application of our results, we provide a convenient version below that relaxes the
trio-concentration assumption for E required in our previous work [63].

Consider a non-negative function fptq on r0,8q which tends to zero with t tend-
ing to infinity. Given a matrix A, we say that a random matrix E is f -bounded
(with respect to A) if for any non-trivial left singular vector u and non-trivial right
singular vector v of A, we have

P
`

|uTEv| ě t
˘

ď fptq.

Theorem 10 (f-bounded random noise). Assume A has rank r and E is f -bounded.
For 1 ď k ď r, if δk ą 0, then for any t ą 0,

} sin =pUk, rUkq} ď 2
?
k

ˆ

t

δk
` 2

}E}2

δkσk

˙

1tkăru ` 2
}E}

σk

holds with probability at least

1´ r292rf

ˆ

t

2r

˙

´ k292kf

ˆ

δk
4k

˙

.

The same result also holds for sin =pVk, rVkq.

The proofs of Theorems 8, 9 and 10 can be found in Section 7.
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2.2. `8 and `2,8 analysis. Next, we present a result regarding the estimation of
the singular vectors on an entrywise basis. In this context, a parameter known as
the incoherence parameter of the singular vector matrices U and V , denoted as
}U}2,8 and }V }2,8, is of central importance. Smaller values of }U}2,8 and }V }2,8
suggest that the information contained in the signal matrix A is less concentrated
in just a few rows or columns.

In this section, we use Uk,s “ puk, ¨ ¨ ¨ , usq to denote the singular vector matrix for
1 ď k ď s ď r. We abbreviate Uk,s to Us when k “ 1. Note that PUk,s

“ Uk,sU
T
k,s.

These notations also apply to rUk,s and rUs. For simplicity, we only state the results
for the left singular vectors Uk,s. The corresponding results for the right singular
vectors can be derived by applying these results to the transposes of matrices AT

and AT ` ET.
Let us make a temporary assumption that σ1 ď n2. This assumption is reason-

able because if σk ą n2, it indicates a highly significant signal, and the impact of
noise becomes negligible in such cases. Denote σ0 :“ 8 and δ0 :“ 8.

Theorem 11 (`8 and `2,8 bounds: simplified asymptotic version). Let A and E
be N ˆn real matrices, where A is deterministic with rank r ě 1 and the entries of
E are i.i.d. standard Gaussian random variables. Let 1 ď k ď r and σk ě 2}E}.

‚ If mintδk´1, δku Á r
a

r ` logpN ` nq, then with probability 1´pN `nq´C ,

}ruk ´ pru
T
k ukquk}8 À

a

r ` logpN ` nq

mintδk´1, δku
}U}2,8 `

a

r logpN ` nq

σk
p1` }U}2,8q .

‚ If δk Á r
a

r ` logpN ` nq, then with probability 1´ pN ` nq´C ,

}rUk ´ PUk
rUk}2,8 À

?
k

a

r ` logpN ` nq

δk
}U}2,8 `

?
k

a

r logpN ` nq

σk
p1` }U}2,8q .

In many applications, the primary interest lies in comparing rUk with UkO, ac-
counting for the non-uniqueness of singular vectors via an orthogonal matrix O.

A suitable choice of O that aligns Uk with rUk effectively can be determined by

examining the SVD of UT
k
rUk. By Proposition 24, the SVD of UT

k
rUk is UT

k
rUk “

O1 cos =pUk, rUkqO
T
2 and we choose O “ O1O

T
2 . Note that the discrepancy between

UT
k
rUk and O can be measured by the principal angles between the subspaces Uk

and rUk. In Proposition 25, we establish

}rUk ´ UkO}2,8 ď }rUk ´ PUk
rUk}2,8 ` }Uk}2,8 } sin =pUk, rUkq}

2. (11)

Therefore, by combining Theorem 5 with Theorem 11, we obtain the next result.

Corollary 12. Under the same assumption as Theorem 11, the following holds:

‚ If mintδk´1, δku Á r
a

r ` logpN ` nq, then with probability 1´pN `nq´C ,

min
sPt˘1u

}uk ´ sruk}8 À

a

r ` logpN ` nq

mintδk´1, δku
}U}2,8

`

a

r logpN ` nq

σk
p1` }U}2,8q `

}E}2

σ2
k

}uk}8.
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‚ If δk Á r
a

r ` logpN ` nq, then with probability 1´ pN ` nq´C ,

min
OPOkˆk

}rUk ´ UkO}2,8 À
?
k

a

r ` logpN ` nq

δk
}U}2,8

`
?
k

a

r logpN ` nq

σk
p1` }U}2,8q `

}E}2

σ2
k

}Uk}2,8.

Theorems 11 follows as a direct consequence of the next general and non-asymptotic
result, which we will prove in Section 6.

Theorem 13. Let A and E be N ˆ n real matrices, where A is deterministic and
the entries of E are i.i.d. standard Gaussian random variables. Assume A has rank

r ě 1. Let K ą 0 and b ě 2. Denote η :“ 11b2

pb´1q2

a

2plog 9qr ` pK ` 7q logpN ` nq.

Assume p
?
N `

?
nq2 ě 32pK ` 7q logpN ` nq ` 64plog 9qr. Consider 1 ď r0 ď r

such that σr0 ě 2bp
?
N`

?
nq`80bηr and δr0 ě 75χpbqηr. For any 1 ď k ď s ď r0,

if mintδk´1, δsu ě 75χpbqηr, then with probability at least 1´ 40pN ` nq´K ,

}rUk,s ´ PUk,s
rUk,s}2,8 ď 3

?
2
pb` 1q2

pb´ 1q2
}U}2,8

η
?
s´ k ` 1

mintδk´1, δsu
1ts´k`1‰ru

`
2
?

2b2

pb´ 1q2
p1` }U}2,8q

g

f

f

e

ÿ

iPJk,sK,σiďn2

γ2

σ2
i

`
ÿ

iPJk,sK,σiąn2

16n

σ2
i

,

(12)

where γ :“ 9b2

pb´1q2

a

rpK ` 7q logpN ` nq.

It should be noted that, as per the aforementioned result, the term

ÿ

kďiďs,σiąn2

16n

σ2
i

ă
16

n2

can always be considered negligible in comparison to the other terms. Indeed, when
the signal is extremely strong, i.e. σi ą n2 " }E} “ Θp

?
N `

?
nq, the impact of

noise becomes minimal.
More generally, we can establish the following result, which provides bounds for

the singular subspaces in any arbitrary direction. For the simplicity of presentation,
we assume all the singular values are no more than n2. The proofs are provided in
Section 6.3.

Theorem 14 (Bounds on linear and bilinear forms). Under the assumptions of
Theorem 13 and further assuming that σ1 ď n2, for any unit vectors x P RN and y “
pyk, ¨ ¨ ¨ , ysq

T P Rs´k`1, the following holds with probability at least 1´40pN`nq´K :

}xTprUk,s ´ PUk,s
rUk,sq} ď3

?
2
pb` 1q2

pb´ 1q2
}xTU}

η
?
s´ k ` 1

mintδk´1, δsu
1ts´k`1‰ru

`
2
?

2b2

pb´ 1q2
γ
`

1` }xTU}
˘

g

f

f

e

s
ÿ

i“k

1

σ2
i
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and
ˇ

ˇ

ˇ
xTprUk,s ´ PUk,s

rUk,sqy
ˇ

ˇ

ˇ
ď3
?

2
pb` 1q2

pb´ 1q2
}xTU}

η
a

}y}0
mintδk´1, δsu

1ts´k`1‰ru

`
2
?

2b2

pb´ 1q2
γ
`

1` }xTU}
˘

s
ÿ

i“k

|yi|

σi
, (13)

where γ “ 9b2

pb´1q2

a

rpK ` 7q logpN ` nq.

Remark 15. When the focus is on comparing the linear (or bilinear) forms of Uk,s
and rUk,s, in a manner analogous to Corollary 12, one can leverage the fact provided
in Proposition 25:

}xTprUk,s ´ Uk,sOq} ď }x
TprUk,s ´ PUk,s

rUk,sq} ` }x
TUk,s}} sin =pUk,s, rUk,sq}

2

and combine Theorems 5 and 14.
Specially, applying (13) with the canonical vectors, together with Proposition

25, we have with probability 1´ pN ` nq´C that

}rUk,s ´ Uk,sO}max

À

a

r ` logpN ` nq

mintδk´1, δsu
}U}2,8 `

a

r logpN ` nq

σs
p1` }U}2,8q `

}E}2

σ2
s

}Uk,s}2,8 (14)

for some orthogonal matrix O.

Building upon the proof of Theorem 12 and incorporating minor modifications,
we obtain the subsequent bounds. These describe the extent to which the dominant
singular vectors of the perturbed matrix, when weighted by their singular values,
deviate from the original subspace. The proof can be found in Section 6.4.

Theorem 16 (Bounds on singular value-adjusted projection perturbation). Under
the assumptions of Theorem 13, the following holds with probability at least 1 ´
40pN ` nq´K :

}rUk,s rDk,s ´ PUk,s
rUk,s rDk,s}2,8 ď 3

?
2
pb` 1q2

pb´ 1q2
}U}2,8

ησk
?
s´ k ` 1

mintδk´1, δsu
1ts´k`1‰ru

`
2
?

2b2

pb´ 1q2
p1` }U}2,8q

a

γ2ps´ k ` 1q ` 16,

where γ “ 9b2

pb´1q2

a

rpK ` 7q logpN ` nq.

Directly comparing rUk,s rDk,s with Uk,sO rDk,s, with respect to the choice of an
orthogonal matrix O, is not as straightforward as in the unweighted case given in

Corollary 12. It requires a closer analysis of the interaction between rDk,s and the
orthogonal matrix O.

To illustrate the main idea of such extension, we focus exclusively on the full
singular vector matrix U and work with the following bound: for some orthogonal
matrix O of size r ˆ r,

}rUr rDr ´ UO rDr}2,8 ď}rUr rDr ´ PU rUr rDr}2,8 ` }U}2,8} sin =pU, rUrq}}E}. (15)

The proof of (15) can be found in Appendix A.4. Using similar arguments, we

can establish the comparison of rUk,s rDk,s and Uk,sO rDk,s, though this would result
in a more complex version of the second term on the right-hand side of (15) (a
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generalization we will not pursue here). From (15), by combining Theorem 16 with
Theorem 5, we arrive at the next result, which plays an important role in our
applications.

Corollary 17. Under the assumptions of Theorem 13, where we set r0 “ s “ r
and k “ 1, the following holds with probability at least 1´ 40pN ` nq´K :

min
OPOrˆr

}rUr rDr ´ UO rDr}2,8 ď
36b4

pb´ 1q4
r
a

pK ` 7q logpN ` nqp1` }U}2,8q

` 2}U}2,8
}E}2

σr
.

The proof of Theorem 16 can be adapted to draw comparisons between rUk,s rDk,s

and PUk,s
rUk,s rDk,s in arbitrary directions, analogous to the approach taken in The-

orem 14. However, we do not explore this generalization in the present work.

3. Related works

In the deterministic setting, several important studies have introduced variants
and extensions of the classical Davis-Kahan-Wedin sin Θ theorems [40, 76]. For
instance, a study by Yu, Wang and Samworth [80] propose a variant of the Davis-

Kahan-Wedin theorem for } sin Θ}F where the δ̂k :“ σk ´ rσk`1 is replaced by
δk :“ σk ´ σk`1. Vu and Lei [74] present a variational form of the Davis-Kahan
sin Θ theorem for the perturbation of a positive semidefinite matrix A and obtained
bounds on } sin Θ}F for the eigenvector space A and a subspace not necessarily cor-
responding to that of the perturbed matrix. Cai and Zhang [29] provide separate
perturbation bounds on } sin Θ}F and } sin Θ} for the left and right singular sub-
spaces, specifically tailored to handle cases when N,n differ significantly. A robust
perturbation analysis for symmetric low-rank plus perturbation matrices is pro-
posed by [81] in a deterministic setting. Meanwhile, Luo, Han and Zhang [58] focus
on low-rank matrix estimation and obtain bounds under the Schatten-q matrix

norms, i.e. bounds on } sin =pU, rUq}q with q P r1,8s for the entire singular sub-
spaces. Zhang and Zhou [82] have recently developed deterministic perturbation
bounds for the singular subspaces in the Frobenius norm, specifically for pairs of
matrices where one is derived from the other by omitting a single column. These
bounds have been employed to analyze the performance of spectral clustering meth-
ods applied to mixture models.

Switching to the stochastic framework, the literature is more recent and equally
rich. As outlined in the introduction, our main results in this paper improve upon
the works [63, 64, 72]. In [75], Wang explores the non-asymptotic distribution of
singular vectors when entries of X are i.i.d. standard Gaussian random variables.
Meanwhile, Allez and Bouchaud [5] investigate the eigenvector dynamics of A `
E when both A and E are real symmetric matrices, and the entries of E are
constructed from a family of independent real Brownian motions. A perturbative
expansion of the coordinates of the eigenvectors is provided by Benaych-Georges,
Enriquez and Michäıl [15]. In line with these studies, Zhong [83] develops a non-
asymptotic Rayleigh-Schrdinger theory for symmetric low-rank plus random noise
model. The results focus only on the perturbed leading eigenvector and investigate
sin =pru1, ukq with k ą 1.
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The field has recently witnessed significant growth in the literature focused on
fine-grained perturbation analysis. This includes in-depth examinations of the per-
turbed singular vectors and singular subspaces, with particular attention to their
`8 and `2,8 norms [1, 2, 4, 20, 27, 32, 36, 45, 55, 60, 78, 79, 84], as well as a broader
exploration of their linear and bilinear forms [53,54,56,77].

Among these works, in a deterministic setting, Fan, Wang, and Zhong [45] specif-
ically focus on the scenario where the signal matrix is low-rank and exhibits inco-

herence. They establish bounds for }rUO´U}max and maxiPrrs }rui´ui}8. A series
of results in [1, 2, 20, 27, 36, 78, 79] has been obtained within the ingenious leave-
one-out analysis framework, under varying assumptions about the noise matrix. In
the context of symmetric matrices, Abbe, Fan, Wang, and Zhong [2] investigate the

matrix rA “ A`E, where A satisfies mild incoherence conditions and E is a random
noise matrix. They establish `2,8 norm bounds for the eigenspaces, considering a
broad range of noise matrices E. Building on this work, Abbe, Fan, and Wang [1]
further extend their previous work [2] by conducting a more comprehensive `2,p
analysis of eigenspaces for a hollowed version of PCA. In another study, [27] con-
siders a low-rank plus random noise matrix model, specifically in scenarios when the
matrix dimensions are highly unbalanced. The authors examine the sample Gram
matrix with diagonal deletion and achieve `2 and `2,8 estimation accuracy. Lei [55]
investigates the `2,8 eigenspace perturbation bounds for symmetric random matri-
ces, accounting for more complex dependency structures within the noise matrix.
Meanwhile, Chen, Fan, Ma, and Wang [36] develop the `8 eigenvector perturbation
bounds for asymmetric probability transition matrices. Within the phase synchro-
nization model, Zhong and Boumal [84] derive the `8 perturbation bounds for the
leading eigenvectors, as a by-product of their analysis of semidefinite programming
relaxations and the generalized power method. A recent study by Bhardwaj and
Vu [20] presents a stochastic variant of the Davis-Kahan-Wedin theorem, which
quantifies the perturbation of eigenvectors and singular vectors in the `8 norm.
This study pertains to low-rank signal matrices in the presence of general random
noise, analogous to the setting explored in [63] for `2 norm analysis. In a recent
work by Yan and Wainwright [79], the authors explore the same low-rank matrix
perturbation model as presented in this paper, where the noise E consists of inde-

pendent sub-Gaussian entries. By employing a novel expansion of rUrO ´ U with
respect to the noise E, the findings in [79] establish a foundation from which the
`2,8 bound for the full singular vector matrices can be derived, in addition to pro-
viding a distributional characterization of the error in the estimation. The results
in [79] refine the estimates from an earlier work by Yan, Chen and Fan [78], which
considers a more general noise matrix E.

In the context of symmetric matrices, Eldridge, Belkin, and Wang [43] utilize
the Neumann series trick to bound }ru ´ u}8. Cape, Tang, and Priebe [32] offer
comprehensive perturbation bounds for the `2,8 norm and discuss applications
to matrices with specialized structures. Additionally, Agterberg, Lubbers, and
Priebe [4] introduce an estimator for singular vectors of high-dimensional, low-rank
matrices with additive heteroskedastic sub-Gaussian noise, proving finite-sample
`2,8 bounds and a Berry-Esseen theorem for the individual entries of the estimator.

Koltchinskii and Xia [54] have derived concentration bounds for linear and bi-
linear forms involving singular vectors and singular subspaces, under the same
setting as the current paper. This work was later extended to tensors by Xia and
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Zhou [77]. The concentration and asymptotic distributions of bilinear forms of
the spectral projectors for principle components under Gaussian noise in a general
Hilbert space have been explored in [53]. All these findings require the spectral
gap to be of the same order as the size of noise matrix }E}. Improving upon the
result in [54], Li, Cai, Poor and Chen in [56] consider the linear function aTruk for
the perturbed eigenvector ruk applicable to symmetric matrix denoising models and
principal components under Gaussian noise. They derive bounds on the distance
between aTruk and a de-biased estimator, requiring only the eigen-gap to be larger
than

?
r log n. Other works by Cheng, Wei and Chen [38] and Agterberg [3] also

highlight perturbation results in the presence of small eigen-gaps.
Comprehensive insights into the `2 and `8 analyses of current perturbation re-

sults and their practical implications are available in the survey [35].
In the context of random matrix theory, significant efforts have been devoted to

studying the spectral statistics of deformed random matrices, especially focusing on
extreme eigenvalues and eigenvectors. These extreme eigenvalues show unique spec-
tral behaviors that differ markedly across various transition regimes, a phenomenon
known as the BBP phase transition, after Baik, Ben Arous, and Péché’s founda-
tional work [9]. The extreme eigenvectors also undergo a phase transition with
initial results established by [17,18,66]. Extensive research has followed on extreme
eigenvalues [8,10,16,23,42] and extreme eigenvectors [12,13,14,19,23,33,34,44] in
these models. These studies largely investigate the limiting behavior of extreme
eigenvalues and eigenvectors as the matrix size grows to infinity.

The selection of references cited herein represents a snapshot of a rapidly ad-
vancing field and is not intended to be exhaustive.

4. Applications

4.1. Gaussian mixture model. The Gaussian Mixture Model (GMM) is a type of
probabilistic model often used for clustering and density estimation. It assumes that
the observed data are generated from a mixture of several Gaussian distributions,
each characterized by a mean vector and a covariance matrix.

Consider observed data X “ pX1, ¨ ¨ ¨ , Xnq P Rpˆn, where each Xi is a p-
dimensional vector. We assume there are k distinct clusters represented by the
centers θ1, ¨ ¨ ¨ , θk P Rp. Denote rns :“ t1, ¨ ¨ ¨ , nu. Let z “ pz1, ¨ ¨ ¨ , znq

T P rksn be
the latent variable that represents the true cluster labels for each observation Xi.
The model assumes that each Xi is generated as a result of adding a Gaussian noise
term εi to its corresponding center θzi , with εi’s being i.i.d. N p0, Ipq. In particular,
Xi “ θzi ` εi and we denote

X “ EpXq ` E. (16)

The goal of the GMM is to classify the observed data X into k clusters, and
recover the latent variable z. Let rz be the output of a clustering algorithm for the
GMM and the accuracy of this algorithm can be evaluated using the misclassifica-
tion rate, defined as:

Mpz,rzq :“
1

n
min
πPSk

|ti P rns : zi ‰ πprziqu| ,

where Sk is the set of all permutations of rks.
To solve the clustering problem, typically, more satisfying outcomes can be ob-

tained by beginning with an initial estimate and then refining it with other tools like
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iteration or semidefinite programming (SDP). However, our discussion will focus
exclusively on the application of simple spectral methods to illustrate perturbation
results. Such methods have recently received considerable attention in the liter-
ature, as seen in [1, 29, 57, 82], among others. Notably, the case of a two-cluster
GMM with centers ˘µ for a fixed vector µ has been extensively studied in [1, 29].

In the context of a general k-cluster framework, it is important to recognize
insights from [57] that establish spectral clustering as optimal for GMM. Our main
goal is to show that the application of our perturbation results provides a succinct
and effective proof for examining the theoretical performance of spectral algorithms.

Denote the minimum distance among centers as

∆ :“ min
j,lPrks:j‰l

}θj ´ θl}.

When the separation between cluster centers, denoted by ∆, is sufficiently large,
distance-based clustering methods become particularly commendable.

The principle of spectral clustering is elegantly simple. Consider the SVD of
EpXq “ UΣV T, where Σ is a k ˆ k diagonal matrix with potentially zero diagonal
entries if the rank of EpXq is less than k. The matrices U and V respectively consist
of k orthonormal vectors that contain the left and right singular vectors of EpXq.
Let us denote pUTEpXqqj the columns of UTEpXq P Rkˆn. We can demonstrate,
as elaborated in Section 8, that for any columns θi and θj of EpXq “ pθz1 , ¨ ¨ ¨ , θznq,

}θi ´ θj} “ }pU
TEpXqqi ´ pUTEpXqqj}.

This indicates that the columns of UTEpXq “ ΣV T preserve the geometric rela-
tionship among the centers.

Consider the SVD of X “ rU rΛrV T and we use the previously defined notations
rUs, rΛs, rVs. The crux of the analysis lies in proving that, with high probability, the
following inequality holds:

max
1ďjďn

}prUTk Xqj ´ pU
TEpXqqj} ă

1

5
∆. (17)

If this is the case, then performing clustering based on the distances among the

columns of rUTr X will, with high probability, successfully recover the correct cluster
labels. In light of the preceding analysis, we hereby present the following algorithm:

Algorithm 1 Spectral algorithm for GMM

Input: data matrix X P Rnˆp and cluster number k.
Output: cluster labels rz P rksn.

Step 1. Perform SVD on X and denote rUk P Rpˆk the singular vector matrix
composed of the leading k left singular vectors of X.

Step 2. Perform k-means clustering on the columns of rUT
k X.

Algorithm 1 is identical to the algorithm proposed in [57] and [82]. This SVD-
based algorithm has been widely adopted to address a variety of well-known prob-
lems in computer science and statistics, including the hidden clique, hidden bisec-
tion, hidden coloring, and matrix completion, among others (see for instance [57,73]
and references therein for more discussion).

The use of k-means clustering in Step 2 of Algorithm 1 is not a crucial com-
ponent. The key requirement is to establish the inequality in (17); once this is
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achieved, alternative distance-based clustering algorithms may be employed in place
of k-means.

For the output rz of Algorithm 1, we could show the following result:

Theorem 18. Consider the GMM (16) with cluster number k. Let σmin ą 0 be
the smallest singular value of EpXq. Denote the smallest cluster size by cmin. Let
L ą 0 and assume p

?
n`

?
pq2 ě 32pL` 7q logpn` pq ` 64plog 9qk. If

∆ ě max

"

40p
?
n`

?
pq

?
cmin

, 1800k
a

pL` 7q logpn` pq

*

, (18)

σmin ě 40p
?
n`

?
pq ` 3.8ˆ 104k

a

2plog 9qk ` pL` 7q logpn` pq,

then EMpz,rzq ď 40pn` pq´L.

The proof of Theorem 18 is a direct application of Corollary 17 and is detailed in
Section 8. By setting L “ pn`pq{ logpn`pq, for instance, we achieve an exponential
rate of misclassification.

Löffler, Zhang and Zhou [57] have demonstrated that for the output rz of Algo-

rithm 1, provided that ∆ "
k10p

?
n`
?
pq

?
cmin

, the following bound holds:

EMpz,rzq ď exp
`

´p1´ op1qq∆2{8
˘

` expp´0.08nq. (19)

More recently, Zhang and Zhou [82] have developed another innovative approach
to analyze the output rz and obtained the same asymptotic exponential error rate
(19) for the GMM, assuming

cmin ě 100k3 and ∆ "
k3pn` pq{

?
n

?
cmin

.

Additionally, [82, Theorem 3.1] analyzes the estimator rz for the sub-Gaussian mix-
ture model. For the output rz of Algorithm 1, where in Step 2 the selection is made

for rUr with r “ rankpEpXqq (implying the use of all r singular vectors of EpXq),
an exponential error rate is attainable when

cmin ě 10k, ∆ ą C

?
kp
?
n`

?
pq

?
cmin

and σr ą Cp
?
n`

?
pq

for some C ą 0. Abbe, Fan, and Wang [1] also explored the sub-Gaussian mix-
ture model, employing the eigenvectors of the hollowed Gram matrix HpXJXq for
clustering. Their approach leverages the `p perturbation results formulated in their
paper but necessitates stricter conditions on the number of clusters, their sizes, and
the collinearity of the cluster centers.

It is noteworthy that in the context of the GMM, results in [57] and [82] do
not require any assumptions regarding the smallest singular value σmin, due to the
exploitation of the Gaussian nature of the noise matrix E. Our Theorem 18 aligns
with the findings for the sub-Gaussian mixture model in [82]. Since our proof does
not fully utilize the Gaussianality, we only employ the rotation invariance property
to simplify the proof of isotropic local law, as given in Lemma 27. Our findings
can be extended to scenarios where the entries of E are sub-Gaussian random
variables. This extension is facilitated by a lemma analogous to Lemma 27, which
can be proved using established random matrix theory methodologies. Due to the
extensive technical details involved, we have reserved the discussion of the extension
to sub-Gaussian cases for a separate paper.
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4.2. Submatrix localization. The general formulation of the submatrix localiza-
tion or recovery problem involves locating or recovering a k ˆ s submatrix with
entries sampled from a distribution P within a larger m ˆ n matrix populated
with samples from a different distribution Q. Specially, when P and Q are both
Bernoulli or Gaussian random matrices, the detection and recovery of the sub-
matrix have been extensively studied. These investigations span various domains,
including hidden clique, community detection, bi-clustering, and stochastic block
models (see [6,7,11,20,24,25,26,28,37,39,41,46,47,52,59,61,62,73] and references
therein).

The task of recovering a single submatrix has been intensively explored (see for
instance, [26, 28, 37, 47, 61, 73] and references therein), but research on locating a
growing number of submatrices is comparatively limited [28, 37, 39]. In this sec-
tion, we focus on the recovery of multiple (non-overlapping) submatrices within the
model of size mˆ n:

X “M ` E, (20)

where the entries of the noise matrix E are i.i.d. standard Gaussian random vari-
able. The signal matrix is given by

M “

k
ÿ

i“1

λi1Ri
1T
Ci
,

where tRiu
k
i“1 are disjoint subsets in rms and tCiu

k
i“1 are non-overlapping subsets

in rns. We denote 1Ri as a vector in Rm with entries equal to 1 for indices in the set
Ri and 0 elsewhere, and 1Ci

is defined analogously. Denote |Ri| “ ri and |Ci| “ ci.
Assume λi ‰ 0 for all 1 ď i ď k. The goal is to discover the pairs tpRi, Ciqu

k
i“1

from the matrix X.
Observe that the SVD of M is given by M “

řk
i“1 σiuiv

T
i :“ UDV T, where

σi :“ |λi|
?
rici, ui :“ sgnpλiq

1Ri
?
ri
, vi :“

1Ci
?
ci
.

The columns of U and V are composed of ui’s and vi’s respectively and D “

diagpσ1, ¨ ¨ ¨ , σkq.
Note that |Xij ´Mij | “ |Eij | and with high probability, maxi,j |Eij | À

?
log n.

If mini,j |Mij | “ min1ďlďk |λl| Á
?

log n and is greater than maxi,j |Eij |, a simple
element-wise thresholding proves effective for identifying the submatrices.

In general, as in Section 4.1, we apply the same spectral clustering method to
locate the submatrices. Denote C0 :“ rnszYki“1Ci the set of isolated column indices
with size |C0| “ c0; define R0 and its size r0 analagouly. Let pUTMqj represent the
columns of UTM . From UTM “ DV T and the definitions of D and V , it follows
that pUTMqj has only 1 non-zero entry λl

?
rl if j P Cl for some l P rks and it is a

zero vector if j P C0. In particular, if i, j P rns belong to the same Cl for 0 ď l ď k,
it holds that pUTMqi “ pU

TMqj . For i, j P rns from different submatrices, we have
that

min
iPCl,jPCs,
0ďl‰sďk

}pUTMqi ´ pU
TMqj} “ min

1ďiďk
|λi|
?
ri :“ ∆R.

In particular, if ∆R is sufficiently large, distance-based clustering can effectively be
adapted to identify the column index sets of the submatrices.
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Let rU rDrV T be the SVD of X “M `E and consider rUT
k X. The main objective

is to show that, with high probability,

max
1ďjďn

}prUT
k Xqj ´ pU

TMqj} ă
1

5
∆R.

Achieving this allows us to employ a standard clustering approach, such as k-means,

based on distance to classify the columns of rUT
k X and thus recover the column index

subsets tCiu
k
i“0. Similarly, to identify the row index subsets tRiu

k
i“0, we utilize the

parameter

∆C :“ min
1ďiďk

|λi|
?
ci

and apply k-means clustering to the rows of X rVr. We propose the following spectral
algorithm:

Algorithm 2 Spectral algorithm for submatrix localization

Input: data matrix X P Rmˆn and submatrix number k.

Output: column index subsets t rCiu
k
i“0 and row index subsets t rRiu

k
i“0.

Step 1. Perform SVD on X and denote rUk P Rmˆk and rVk P Rnˆk the singular
vector matrices composed of the leading k left and right singular vectors of X
respectively.

Step 2. Perform pk ` 1q-means clustering on the columns of rUT
k X. Output the

column index subsets t rCiu
k
i“0.

Step 3. Perform pk ` 1q-means clustering on the rows of X rVr. Output the row

index subsets t rRiu
k
i“0.

Define

σmin :“ min
1ďiďk

|λi|
?
rici, rmin :“ min

0ďiďk
ri, cmin :“ min

0ďiďk
ci.

Theorem 19. Consider the submatrix localization model (20) with k submatrices.
Let L ą 0 and assume p

?
n`

?
pq2 ě 32pL` 7q logpn` pq ` 64plog 9qk. Given that

∆R ě max

"

40p
?
m`

?
nq

?
rmin

, 1800k
a

pL` 7q logpm` nq

*

,

∆C ě max

"

40p
?
m`

?
nq

?
cmin

, 1800k
a

pL` 7q logpm` nq

*

,

σmin ě 40p
?
m`

?
nq ` 3.8ˆ 104k

a

2plog 9qk ` pL` 7q logpm` nq,

Algorithm 2 succeeds in finding rRi “ Ri and rCi “ Cπpiq, 0 ď i ď k for a bijection

π : rk ` 1s Ñ rk ` 1s with probability at least 1´ 40pm` nq´L.

The proof of Theorem 19 parallels that of Theorem 18, and therefore we omit
the details.

Previous research on the model (20) of multiple submatrix localization includes
notable contributions such as those found in [28,37,39]. Chen and Xu [37] examine
this problem across different regimes, each corresponding to unique statistical and
computational complexities. They focus on scenarios where all k submatrices are
identically sized at KR ˆ KC and share a common positive value λi “ λ. Their
analysis of the Maximum Likelihood Estimator (MLE), a convexified version of
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MLE, and a simple thresholding algorithm address the challenges specific to hard,
easy, and simple regimes, respectively. In the work of Dadon, Huleihel and Bendory
[39], the primary objective is to explore the computational and statistical limits
associated with the detection and reconstruction of hidden submatrices. Under the
same setting as [37] in the context of the multiple submatrix recovery problem, the
authors introduce a MLE alongside an alternative peeling estimator and investigate
the performance of these estimators.

Our Algorithm 2 is identical to Algorithm 3 presented in Cai, Liang and Rakhlin’s
paper [28]. The assumptions laid out in [28] include ri — KR, ci — KC , λi — λ for
all 1 ď i ď k and mintKR,KCu Á maxt

?
m,
?
nu. Given that

λ Á

?
k

mint
?
KR,

?
KCu

`max

#

c

logm

KC
,

c

log n

KR

+

`

?
m`

?
n

?
KRKC

, (21)

the authors of [28] demonstrate that Algorithm 2 successfully recovers the true
submatrix row and column index sets with probability at least 1 ´m´c ´ n´c ´
2 expp´cpm` nqq. The entries of the noise matrix E in [28] are assumed to be i.i.d
zero-mean sub-Gaussian random variables.

While our method does not require that all row or column index sets have the
same order of sizes, in the special case where ri — KR, ci — KC , and λi — λ for all
1 ď i ď k, and furthermore r0 Á KR and c0 Á KC , our analysis indicates that if

λ Á
k
a

logpm` nq

mint
?
KR,

?
KCu

`

?
m`

?
n

mintKR,KCu
, (22)

then Algorithm 2 successfully recovers the submatrix index subsets with probability
at least 1´ pm` nq´c. It should be emphasized that the condition in (22) is more
stringent than that in (21), a difference that becomes particularly pronounced in
cases where KR and KC are highly unbalanced. An interesting direction for future
research would be to improve our perturbation bounds to accommodate cases with
unbalanced matrix dimensions.

5. Preliminary, basic tools and proof overview

5.1. Matrix norms. Consider an N ˆ n matrix A “ paijq with singular values
σ1 ě ¨ ¨ ¨ ě σmintN,nu ě 0. Let ~A~ be a norm of A of certain interest.

The first type of matrix norms are the unitarily invariant norms. The norm
~ ¨ ~ on RNˆn is said to be unitarily invariant if ~A~ “ ~UAV ~ for all orthogonal
matrices U P RNˆN and V P Rnˆn. There is an intimate connection between the
unitarily invariant norms and the singular values of matrices via the symmetric
gauge functions (see [21, Section IV]).

Definition 20 (Symmetric gauge function). A function f : Rn Ñ R is a symmetric
gauge function if

(i) f is a norm,
(ii) fpPxq “ fpxq for all x P Rn and P P Sn (the set of permutation matrices),

(iii) fpε1x1, ¨ ¨ ¨ , εnxnq “ fpx1, ¨ ¨ ¨ , xnq if εj “ ˘1.

We say the symmetric gauge function f is normalized if fp1, 0, ¨ ¨ ¨ , 0q “ 1.

Theorem 21 (Theorem IV.2.2 from [21]). A norm ~ ¨ ~ on RNˆn is unitarily
invariant if and only if ~A~ “ fpσ1, . . . , σmintN,nuq for all A P RNˆn for some
symmetric gauge function f , where σ1, . . . , σmintN,nu are the singular values of A.
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If ~ ¨ ~ is a unitarily invariant norm on RNˆn and f is its associated symmetric
gauge function, then for k, s ď mintN,nu, a unitarily invariant norm on Rkˆs
can be defined by ~A~ “ fpσ1, ¨ ¨ ¨ , σmintk,su, 0, ¨ ¨ ¨ , 0q, where σi’s are the singular

values of A P Rkˆs. As a result, a family of matrix norms can be defined based
on f that can be applied to matrices of varying dimensions. As such, we will not
explicitly mention the dimensions of the unitarily invariant norm ~ ¨ ~.

Moreover, a unitarily invariant norm ~¨~ is said to be normalized if its associated
symmetric gauge function f is normalized. Consequently, a normalized unitarily
invariant norm always satisfies ~diagp1, 0, ¨ ¨ ¨ , 0q~ “ 1.

Another characterization of the unitarily invariant norm is given by the sym-
metric property.

Theorem 22 (Proposition IV.2.4 from [21]). A norm ~ ¨ ~ on RNˆn is unitarily
invariant if and only if the norm is symmetric, that is,

~ABC~ ď }A} ¨ ~B~ ¨ }C}

for every A P RNˆN , B P RNˆn and C P Rnˆn.

A wide range of matrix norms that are commonly used are part of the class of
unitarily invariant norms. For instance, for p P r1,8s, the Schatten p-norm of A is
defined by

}A}p “

¨

˝

mintN,nu
ÿ

i“1

σpi

˛

‚

1{p

.

In particular, the case p “ 2 yields the Frobenius norm }A}F “
b

ř

i,j a
2
ij . The

case p “ 8 yields the operator norm }A} “ σ1. The case p “ 1 yields the nuclear
(or trace) norm

}A}˚ “ }A}1 “

mintN,nu
ÿ

i“1

σi “ tr
´?

AAT
¯

.

Note that
}A}2p “ }A

TA}p{2 for p ě 2. (23)

Another class of unitarily invariant norms is the Ky Fan k-norm

}A}pkq “
k
ÿ

i“1

σi, 1 ď k ď mintN,nu.

Hence, }A}p1q “ }A} and }A}pmintN,nuq “ }A}˚. A highly significant result known
as the Fan dominance theorem is connected to the Ky Fan norm:

Theorem 23 (Theorem IV.2.2 from [21]). Let A,B be two nˆ n matrices. If

}A}pkq ď }B}pkq for k “ 1, 2, ¨ ¨ ¨ , n,

then ~A~ ď ~B~ for all unitarily invariant norms.

If ~ ¨ ~ is also normalized, then a direct implication of Theorem 23 is that

}A} ď ~A~ ď }A}˚, (24)

σminpAq~B~ ď ~AB~ ď }A}~B~,

σminpAq~B~ ď ~BA~ ď }A}~B~.

It also follows from Theorem 22 and (24) that ~AB~ ď ~A~~B~.
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We also consider the following norms, which do not belong to the class of unitarily
invariant norms. Denote Ai,¨’s the rows of A P RNˆn. The `2,8 norm of A is

}A}2,8 “ max
i
}Ai,¨}2 “ max

1ďiďN
}eTi A}.

Finally, denote }A}max “ maxi,j |aij |. Note that } ¨ }max is not sub-multiplicative.

5.2. Distance between subspaces. Using the angles between subspaces and us-
ing the orthogonal projections to describe their separation are two popular ap-
proaches for measuring the distance between subspaces. These two methods are
essentially equivalent when it comes to any unitarily invariant norm ~ ¨~. We start
with some basic notions.

If U and V are two subspaces of the same dimension r, then one could define
the principal angles 0 ď θ1 ď ¨ ¨ ¨ ď θr ď π{2 between them recursively:

cospθiq “ max
uPU,vPV

uT v “ uTi vi, }u} “ }v} “ 1

subject to the constraint

uTi ul “ 0, vTi vl “ 0 for l “ 1, . . . , i´ 1.

Denote =pU, V q :“ diagpθ1, ¨ ¨ ¨ , θrq. Further, let

sin =pU, V q :“ diagpsin θ1, ¨ ¨ ¨ , sin θrq,

cos =pU, V q :“ diagpcos θ1, ¨ ¨ ¨ , cos θrq.

With abuse of notation, we also let U “ pu1, ¨ ¨ ¨ , urq and V “ pv1, ¨ ¨ ¨ , vrq be
matrices of size n ˆ r whose columns are orthonormal bases of subspaces U and
V respectively. Then PU “ UUT (resp. PV “ V V T ) is the orthogonal projection
matrix onto the subspace U (resp. V ). For a subspace W , denote its complement
by WK.

The following facts are collected from [21, Exercises VII. 1. 9 – 1.11].

Proposition 24. Let U, V, PU , PV , sin =pU, V q, cos =pU, V q be as above.

(i) The nonzero singular values of PUPV are the same as the nonzero singular
values of UTV .

(ii) The singular values of PUPV are cos θ1, ¨ ¨ ¨ , cos θr. The nonzero singular
values of PUKPV are the nonzero values of sin θ1, ¨ ¨ ¨ , sin θr.

(iii) The nonzero singular values of PU ´ PV are the nonzero singular values
PUKPV , each counted twice; i.e., these are the nonzero numbers in

sin θ1, sin θ1, sin θ2, sin θ2, ¨ ¨ ¨ , sin θr, sin θr.

For any unitarily invariant norm ~ ¨ ~, by Proposition 24, we observe

~ sin =pU, V q~ “ ~PUKPV ~ “ ~PV KPU~ (25)

and

~PU ´ PV ~ “ ~PUKPV ‘ PUPV K~.

This suggests the (near) equivalence of ~ sin =pU, V q~ and ~PU´PV ~. For instance,
for the Schatten p-norm, we have

}PU ´ PV }p “ 2
1
p }PUKPV }p “ 2

1
p } sin =pU, V q}p.
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For the Ky Fan k-norm, denote }A}p0q “ 0. Then

}PU ´ PV }pkq “

#

}PUKPV }p k´1
2 q
` }PUKPV }p k`1

2 q
, if k is odd;

2}PUKPV }p k2 q
, if k is even.

Another method that is commonly used to quantify the distance between U and
V is to use

min
OPOrˆr

~UO ´ V ~.

It is shown in [35, Lemma 2.6] that the above distance is (near) equivalent to the
~PU ´PV ~ for the Frobenius norm and the operator norm. In fact, we can demon-
strate that these distances are (near) equivalent when considering the Schatten-p
norm for any p P r2,8s :

} sin =pU, V q}p ď min
OPOrˆr

}UO ´ V }p ď
?

2} sin =pU, V q}p. (26)

The proof of (26) is given in Appendix A.1.
More generally, for any unitarily invariant norm ~ ¨ ~ on RNˆn, we have

min
OPOrˆr

~UO ´ V ~ ď
?

2~ sin =pU, V q~. (27)

The proof of (27) is given in Appendix A.2.
In certain applications, the primary focus is to compare the matrices U “

pu1, ¨ ¨ ¨ , urq and V “ pv1, ¨ ¨ ¨ , vrq of size n ˆ r with respect to specific directions.
According to Proposition 24, the SVD of UTV is given by

UTV “ O1 cos =pU, V qOT
2 , (28)

where O1, O2 P Orˆr. Denote O :“ O1O
T
2 P Orˆr. We highlight the following

deterministic result, the proof of which can be found in Appendix A.3.

Proposition 25. Let x be any unit vector in Rn and y be any unit vector in Rr.
We have

}xTpV ´ UOq} ď }xTpV ´ PUV q} ` }x
TU}} sin =pU, V q}2

and
ˇ

ˇxTpV ´ UOqy
ˇ

ˇ ď
ˇ

ˇxTpV ´ PUV qy
ˇ

ˇ` }xTU}} sin =pU, V q}2.

In particular,

}V ´ UO}2,8 ď }V ´ PUV }2,8 ` }U}2,8} sin =pU, V q}2.

Finally, it can be verified from the definition that for any orthogonal matrix O,

}V ´ UO}2,8 “ }V O
T ´ U}2,8.

5.3. Basic tools. This section presents the basic tools necessary for the proofs of
our main results, many of which build upon the previous work by O’Rourke, Vu
and the author [64].

We start with the standard linearization of the perturbation model (1). Consider
the pN ` nq ˆ pN ` nq matrices

A :“

ˆ

0 A
AT 0

˙

and E :“

ˆ

0 E
ET 0

˙

in block form. Define
rA :“ A` E .
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The non-zero eigenvalues of A are given by λj “ σj and λj`r “ ´σj for 1 ď j ď r.
Then uj :“ 1?

2
puTj , v

T
j q

T and uj`r :“ 1?
2
puTj ,´v

T
j q

T for 1 ď j ď r are their

corresponding orthonormal eigenvectors. The spectral decomposition of A is

A “ UDUT, (29)

where U :“ pu1, . . . ,u2rq and D :“ diagpλ1, ¨ ¨ ¨ , λ2rq. It follows that UTU “ I2r.

Similarly, the non-zero eigenvalues of rA are denoted by rλj “ rσj and rλj`mintN,nu “

´rσj for 1 ď j ď mintN,nu. The eigenvector corresponding to rλj is dentoed by ruj
and is formed by the right and left singular vectors of rA.

For z P C with |z| ą }E}, we define the resolvent of E as

Gpzq :“ pzI ´ Eq´1.

Often we will drop the identity matrix and simply write pz ´ Eq´1 for this matrix.
We use Gijpzq to denote the pi, jq-entry of Gpzq.

The key observation is that Gpzq can be approximated by a diagonal matrix.
Consider a random diagonal matrix

Φpzq :“

˜

1
φ1pzq

IN 0

0 1
φ2pzq

In

¸

, (30)

where

φ1pzq :“ z ´
ÿ

tPJN`1,N`nK

Gttpzq, φ2pzq :“ z ´
ÿ

sPJ1,NK

Gsspzq. (31)

By setting

Iu :“

ˆ

IN 0
0 0

˙

and Id :“

ˆ

0 0
0 In

˙

,

one can rewrite (31) as

φ1pzq “ z ´ tr IdGpzq, φ2pzq “ z ´ tr IuGpzq. (32)

By elementary linear algebra, it can be verified that

φ1pzq “ φ2pzq ´
1

z
pn´Nq. (33)

From the definition of U in (29), it is easy to verify that

UTΦpzqU “
ˆ

αpzqIr βpzqIr
βpzqIr αpzqIr

˙

, (34)

where we denote

αpzq :“
1

2

ˆ

1

φ1pzq
`

1

φ2pzq

˙

and βpzq :“
1

2

ˆ

1

φ1pzq
´

1

φ2pzq

˙

for notational brevity. It follows that

}UTΦpzqU} “ max

"

1

|φ1pzq|
,

1

|φ2pzq|

*

. (35)

The next lemma offers bounds for the resolvent and the functions φipzq’s. The
proof follows similarly to that of Lemma 16 in [64] and is omitted for brevity.
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Lemma 26. On the event where }E} ď 2p
?
N `

?
nq,

}Gpzq} ď
b

b´ 1

1

|z|

and
ˆ

1´
1

4bpb´ 1q

˙

|z| ď |φipzq| ď

ˆ

1`
1

4bpb´ 1q

˙

|z| for i “ 1, 2 (36)

for any z P C with |z| ě 2bp
?
N `

?
nq and for any k P J1, N ` nK.

Consequently, by Lemma 26, we obtain

maxt| trGpzq|, | tr IuGpzq|, | tr IdGpzq|u ď pN ` nq}Gpzq} ď b

b´ 1

N ` n

|z|
. (37)

The subsequent isotropic local law is derived using a proof similar to that of [64,
Lemma 27]. For completeness, we briefly describe the proof in Appendix B.1.

Lemma 27. Let K ą 0 and assume p
?
N `

?
nq2 ě 32pK ` 1q logpN ` nq. For

any unit vectors x,y P RN`n and for any z P C with |z| ě 2bp
?
N `

?
nq,

ˇ

ˇxT pGpzq ´ Φpzqqy
ˇ

ˇ ď
5b2

pb´ 1q2

a

pK ` 1q logpN ` nq

|z|2
(38)

with probability at least 1´ 9pN ` nq´pK`1q.

Recall

η “
11b2

pb´ 1q2

a

pK ` 7q logpN ` nq ` plog 9qr.

Denote

D :“ tz P C : 2bp
?
N `

?
nq ď |z| ď 2n3u.

Using the previous lemma and a standard ε-net argument, we obtain the following
result that is analogous to [64, Lemma 9]:

Lemma 28. Under the assumptions of Theorem 5, one has

max
zPD

|z|2
›

›UT pGpzq ´ ΦpzqqU
›

› ď η

with probability at least 1´ 9pN ` nq´K .

Lemma 28 improves the rank r-dependence in the bound of [64, Lemma 9]. The

proof of Lemma 28 is included in Appendix B.2. For the case 2bp
?
N `

?
nq ą 2n3

where D is empty, Gpzq can be approximately be even simpler matrices (see Lemma
30 below).

The following result on the location of perturbed singular values is obtained
using Lemma 28. Consider the random function

ϕpzq :“ φ1pzqφ2pzq, (39)

where φ1pzq and φ2pzq are defined in (31). Define the auxiliary functions for b ě 2:

ξpbq :“ 1`
1

2pb´ 1q2
and χpbq :“ 1`

1

4bpb´ 1q
.

Define a set in the complex plane in the neighborhood of any σ P R by

Sσ :“ tw P C : | Impwq| ď 20χpbqηr, σ ´ 20χpbqηr ď Repwq ď χpbqσ ` 20χpbqηru .
(40)
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Theorem 29 (Singular value locations). Let A and E be N ˆ n real matrices,
where A is deterministic and the entries of E are i.i.d. standard Gaussian random
variables. Assume A has rank r ě 1. Let K ą 0 and b ě 2. Denote η :“
11b2

pb´1q2

a

2plog 9qr ` pK ` 7q logpN ` nq. Assume p
?
N`

?
nq2 ě 32pK`7q logpN`

nq ` 64plog 9qr. Let 1 ď r0 ď r such that σr0 ě 2bp
?
N `

?
nq ` 80bηr and

δr0 ě 75χpbqηr. Consider any 1 ď k ď s ď r0 satisfying mintδk´1, δsu ě 75χpbqηr.
For any j P Jk, sK, there exists j0 P Jk, sK such that rσj P Sσj0

, and

|ϕprσjq ´ σ
2
j0 | ď 20ξpbqχpbqηr prσj ` χpbqσj0q (41)

with probability at least 1´ 10pN ` nq´K .

Theorem 29 shares similarities with Theorem 12 in [64], albeit with a relaxed
requirement regarding the separation of distinct singular values ofA. The derivation
of Theorem 29 is largely based on the proof of Theorem 12 in [64]. To ensure our
paper is self-contained, we have provided the proof in the Appendix D.

The next result suggests that when |z| is large, the resolvent Gpzq can be approx-
imated by simpler matrices. The proof is analogous to that of Lemma 17 in [64],
and is omitted.

Lemma 30. On the event where }E} ď 2p
?
N `

?
nq,

›

›

›

›

Gpzq ´
1

z
IN`n

›

›

›

›

ď
b

b´ 1

}E}

|z|2

and
›

›

›

›

Gpzq ´
1

z
IN`n ´

E
z2

›

›

›

›

ď
b

b´ 1

}E}2

|z|3

for any z P C with |z| ě 2bp
?
N `

?
nq.

Lemma 31 (Lemma 13 from [64]). Under the assumptions of Theorem 5,

max
lPJ1,r0K:σlą

1
2n

2
|rσl ´ σl| ď ηr

with probability at least 1´ pN ` nq´1.5r2pK`4q.

The next result provides a non-asymptotic bound on the operator bound of }E}.

Lemma 32 (Spectral norm bound; see (2.3) from [67]). Let E be an N ˆn matrix
whose entries are independent standard Gaussian random variables. Then

}E} ď 2p
?
N `

?
nq

with probability at least 1´ 2e´p
?
N`

?
nq2{2.

5.4. Proof overview. In this section, we outline our proof strategy, which lever-
ages techniques from random matrix theory, particularly the resolvent method, to

analyze the eigenvalues and eigenvectors of the symmetric matrices A and rA “ A`E
detailed in Section 5.3.

At the heart of our analysis is the isotropic local law (Lemma 27), which asserts
that the resolvent Gpzq “ pzI ´ Eq´1 can be approximated by a simpler matrix
Φpzq. This approximation streamlines complex calculations involving Gpzq and
is a technique commonly used to study extreme eigenvalues and eigenvectors in
random matrix theory, as seen in, for instance, [12, 13, 22, 51]. Our work diverges
from these prior approaches by selecting Φpzq as a random matrix derived from Gpzq
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itself, which better suits the finite sample context, compared to the deterministic
approximations used in previous studies that rely on Stieltjes transforms in the
asymptotic regime.

Building upon the isotropic local law, we determine the singular value locations

of rA in Theorem 29 and achieve the control of
›

›UT pGpzq ´ ΦpzqqU
›

› as given in
Lemma 28. These instruments have been previously explored in the previous work
by O’Rourke, Vu and the author [64]. In this paper, we refine these estimations and
ease the conditions in our earlier work [64]. Furthermore, we deploy these refined
tools to derive a variety of new perturbation bounds.

To explain the idea of deriving perturbation bounds, we simply focus on the

largest eigenvector ru1 of rA. In practice, it is necessary to consider both ru1 and
rur`1, as they jointly involve the largest singular vectors u1 and v1. Nonetheless,
for the sake of clarity, we will momentarily disregard the terms related to ur`1 and
rur`1 to illustrate the main ideas.

We start with the decomposition

ru1 “ pu1u
T
1 qru1 ` P1ru1 `Qru1, (42)

where P1 “ U1UT
1 and U1 is the matrix of eigenvectors of A excluding u1. Mean-

while, Q is the orthogonal projection matrix onto the null space of A. The challenge
in establishing perturbation bounds for ru1 lies in quantifying the latter two terms
on the right-hand side of (42).

First, for the `2 analysis, we aim to bound sin =pu1, ru1q. By taking the Frobenius
norm on both sides of (42), we obtain

1 “ cos2 =pu1, ru1q ` }P1ru1}
2 ` }Qru1}

2.

Rearranging the terms yields

sin2
=pu1, ru1q “ }P1ru1}

2 ` }Qru1}
2.

A straightforward linear algebra argument allows us to bound }Qru1} by the noise-
to-signal ratio }E}{σ1. The main task is then to establish a bound for }P1ru1} ď

}UT
1 ru1}, which effectively comes down to bounding |uT

j ru1| for j ‰ 1. We explain
how to achieve this bound below.

From the equation rAru1 “ pA` Eqru1 “ rλ1ru1, we can express ru1 as

ru1 “ prλ1I ´ Eq´1Aru1 “ Gprλ1qAru1

and further rewrite it as

ru1 “ Φprλ1qAru1 `

´

Gprλ1q ´ Φprλ1q
¯

Aru1.

Hence, for j ‰ 1, we have

uT
j ru1 “ uT

j Φprλ1qAru1 ` uT
j

´

Gprλ1q ´ Φprλ1q
¯

Aru1 (43)

Calculations similar to those in (34) indicate that the first term on the right-hand

side of (43), uT
j Φprλ1qAru1, is exactly λjαprλ1qu

T
j ru1 (omitting the term containing

ur`1). We continue from (43) to get
´

1´ λjαprλ1q
¯

uT
j ru1 « uT

j

´

Gprλ1q ´ Φprλ1q
¯

Aru1.

To control |uT
j ru1|, we apply Theorem 29 to analyze the coefficient 1´λjαprλ1q that

precedes it. Lemma 28 is applied to manage the term on the right-hand side.
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Next, for the `8 analysis, from (42), we obtain

}ru1 ´ pu1u
T
1 qru1}8 ď }P1ru1}8 ` }Qru1}8 ď }U}2,8}UT

1 ru1} ` }Qru1}8.

The bound for }UT
1 ru1} has already been established in the preceding `2 analysis.

The second term, }Qru1}8, can be bounded by considering the fact

Qru1 “ Q
´

Gprλ1q ´ Φprλ1q
¯

Aru1

and then applying Lemma 28.
These are the main ideas that we have incorporated in our proofs. Before con-

cluding this section, we would like to highlight that the results presented in this
paper can be extended to scenarios where the noise matrix E contains independent
sub-Gaussian entries. This extension would rely on a lemma similar to Lemma
27, which can be demonstrated using the tools provided by random matrix theory.
However, due to the technical complexities involved, we have chosen to reserve the
discussion of this extension to sub-Gaussian cases for a forthcoming paper. It re-
mains a highly interesting direction to further establish these perturbation bounds
when the noise matrix E comprises heteroskedastic random variables. We believe
that new tools and insights, extending beyond the scope of the methods presented
in this paper, will be required to rigorously establish such extensions.

6. Proofs of Theorems 5, 13, 14 and 16

In the proofs below, we always work on the event where }E} ď 2p
?
N `

?
nq;

Lemma 32 shows this event holds with probability at least 1 ´ 2e´p
?
N`

?
nq2{2 ě

1´ 2pN ` nq´16pK`7q since p
?
N `

?
nq2 ě 32pK ` 7q logpN ` nq by assumption.

Denote

I :“ Jk, sKY Jr ` k, r ` sK
and

J :“ J1, 2rKzI “ J1, k ´ 1KY Js` 1, rKY Jr ` 1, r ` k ´ 1KY Jr ` s` 1, 2rK.

We first obtain an identity for the eigenvector rui. For each i P I, by Weyl’s

inequality, |rλi| ě rσr0 ě σr0 ´ }E} ą }E} “ }E} by supposition on σr0 and thus

Gprλiq and Φprλiq are well-defined. As pA` Eqrui “ rλirui, we solve for rui to obtain

rui “ prλiI ´ Eq´1Arui “ GprλiqArui.

In fact, we can approximate Gprλiq with a simpler random matrix, denoted as

Πpzq below. Depending on the magnitude of rλi under consideration (the specifics

of which will become clear in subsequent context), we choose Πprλiq to be either

Φprλiq if |rλi| is relatively small and 1
rλi
IN`n `

1
rλ2
i

E or even simply 1
rλi
IN`n if |rλi| is

sufficiently large. Furthermore, denote

Ξprλiq :“ Gprλiq ´Πprλiq. (44)

Hence, we rewrite

rui “ ΠprλiqArui ` ΞprλiqArui (45)

This decomposition of rui is critical in facilitating the extraction of its desired prop-
erty information. Note that Lemma 28 and Lemma 30 provides precise control on

the size of Ξprλiq.
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For J Ă J1, 2rK, we introduce the notation UJ to denote the pN `nqˆ |J | matrix
formed from U by removing the columns containing ui for i R J . Similarly, DJ
will denote the |J | ˆ |J | matrix formed from D by removing the rows and columns
containing λi for i R J . Let I :“ J1, 2rKzJ . In this way, we can decompose A as

A “ UDUT “ UJDJUT
J ` UIDIUT

I . (46)

Let PJ be the orthogonal projection onto the subspace Spantuk : k P Ju. Clearly,
PJ “ UJUT

J . If J “ J1, kK, we sometimes simply write Uk for UJ and Pk for PJ .

Analogous notations rUJ , rPJ , rDJ are also defined for rA. We also use PJ2r`1,N`nK “

UJ2r`1,N`nKUT
J2r`1,N`nK to denote the orthogonal projection onto the null space of

A.
Now we proceed to the proofs of the main results.

6.1. Proof of Theorem 5. From (25), we start by observing

~ sin =pUI , rUIq~ “ ~PIc rPI~ ď ~PJ2r`1,N`nK rPI~ ` ~PJ rPI~.

We bound the two terms ~PJ2r`1,N`nK rPI~ and ~PJ rPI~ respectively.

Lemma 33. With probability 1,

~PJ2r`1,N`nK rPI~ ď 2
~PJ2r`1,N`nKE rPI~

σs
. (47)

Proof. By Proposition 24 (i) and Theorem 21,

~PJ2r`1,N`nK rPI~ “ ~UT
J2r`1,N`nK

rUI~.

From the spectral decomposition of rA, we have

pA` Eq rUI “ rUI rDI .

Multiplying by UT
J2r`1,N`nK on the left of the equation above, we further have

UT
J2r`1,N`nKE rUI “ UTJ2r`1,N`nK

rUI rDI .

As σr0 ě b}E} ě 2}E} by supposition, Weyl’s inequality implies that

rσi ě σi ´ }E} ě
1

2
σi (48)

for k ď i ď s. Hence, rDI is invertible since |rλi| “ rσi ą 0 for i P Jk, sK and

|rλi| “ rσi´r ą 0 for i P Jr ` k, r ` sK. It follows from Theorem 22 that

~UT
J2r`1,N`nK

rUI~ “ ~UT
J2r`1,N`nKE rUI rD´1

I ~

ď ~UT
J2r`1,N`nKE rUI~} rD´1

I }

“
~PJ2r`1,N`nKE rPI~

rσs
.

The last equation above follows from the fact that for U with orthonormal columns,
UTB and UUTB share the same singular values.

Thus by another application of (48), we get

~PJ2r`1,N`nK rPI~ ď
~PJ2r`1,N`nKE rPI~

rσs
ď 2

~PJ2r`1,N`nKE rPI~
σs

. (49)

as desired. �
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It remains to bound ~PJ rPI~ “ ~UT
J
rUI~. We apply (24) to obtain

~PJ rPI~ “ ~UT
J
rUI~ ď }UT

J
rUI}˚

ď

b

rankpUT
J
rUIq ¨ }UT

J
rUI}F

ď 2
a

mints´ k ` 1, r ´ s` k ´ 1u}UT
J
rUI}F

“ 2
a

mints´ k ` 1, r ´ s` k ´ 1u

d

ÿ

iPI

}UT
J rui}

2. (50)

In particular, for the operator norm, when |J | ‰ 0, we simply have

}PJ rPI} “ }UT
J
rUI} ď }UT

J
rUI}F “

d

ÿ

iPI

}UT
J rui}

2. (51)

It remains to bound }UT
J rui} for each i P I. We have the following estimates

Lemma 34. For every i P I,

}UT
J rui} ď 3

pb` 2q2

pb´ 1q2
η

mintδk´1, δsu
(52)

with probability at least 1´ 20pN ` nq´K .

The proof of Lemma 34 closely mirrors the strategy employed in Lemma 20
from [64]. For the sake of completeness, we have included the proof of Lemma 34
in Appendix C.

It follows from (50) and Lemma 34 that

~PJ rPI~ ď 6
?

2
pb` 2q2

pb´ 1q2

a

mints´ k ` 1, r ´ s` k ´ 1u
η
?
s´ k ` 1

mintδk´1, δsu

with probability at least 1´ 20pN ` nq´K .
Consequently, we arrive at

~ sin =pUI , rUIq~ “ ~PIc rPI~

ď 6
?

2
pb` 2q2

pb´ 1q2

a

mints´ k ` 1, r ´ s` k ´ 1u
η
?
s´ k ` 1

mintδk´1, δsu

` 2
~PJ2r`1,N`nKE rPI~

σs
. (53)

Specially, the following bound holds for the operator norm:

} sin =pUI , rUIq} ď 3
?

2
pb` 2q2

pb´ 1q2
1t|J|‰0u

η
?
s´ k ` 1

mintδk´1, δsu
` 2

}E}

σs
. (54)

Let γ1, ¨ ¨ ¨ , γ2ps´k`1q be the principle angles of the subspaces UI , rUI . Denote

α1, ¨ ¨ ¨ , αs´k`1 (resp. β1, ¨ ¨ ¨ , βs´k`1) the principle angles of Uk,s, rUk,s (resp. Vk,s, rVk,s).

From the proof of [64, Proposition 8], we see that the singular values of UT
I
rUI , given

by cos γ1, ¨ ¨ ¨ , cos γ2ps´k`1q, are exactly

cosα1, ¨ ¨ ¨ , cosαs´k`1, cosβ1, ¨ ¨ ¨ , cosβs´k`1.

Hence,

~ sin =pUI , rUIq~ “ ~ sin =pUk,s, rUk,sq ‘ sin =pVk,s, rVk,sq~.
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Note that by the definitions of E , rPI and PJ2r`1,N`nK,

PJ2r`1,N`nKE rPI “

˜

0 PUKEP rVk,s

PV KE
TP

rUk,s
0

¸

.

Using the unitary equivalence, we find

~PJ2r`1,N`nKE rPI~ “ ~PUKEP rVk,s
‘ PV KE

TP
rUk,s
~.

Hence, from (53), we conclude that

~ sin =pUk,s, rUk,sq ‘ sin =pVk,s, rVk,sq~

ď 6
?

2
pb` 2q2

pb´ 1q2

a

mints´ k ` 1, r ´ s` k ´ 1u
η
?
s´ k ` 1

mintδk´1, δsu

` 2
~PUKEP rVk,s

‘ PV KE
TP

rUk,s
~

σs
. (55)

The conclusion of Theorem 5 follows immediately from the fact that

maxt~ sin =pUk,s, rUk,sq~,~ sin =pVk,s, rVk,sq~u ď ~ sin =pUk,s, rUk,sq‘sin =pVk,s, rVk,sq~

by Theorem 23.
Specially, for the operator norm, from (54), we see that

maxt} sin =pUk,s, rUk,sq}, } sin =pVk,s, rVk,sq}u

ď } sin =pUk,s, rUk,sq ‘ sin =pVk,s, rVk,sq} “ } sin =pUI , rUIq}

ď 3
?

2
pb` 1q2

pb´ 1q2
1ts´k`1‰ru

η
?
s´ k ` 1

mintδk´1, δsu
` 2

}E}

σs
.

This completes the proof.

6.2. Proof of Theorem 13. We start with the decomposition (45):

rui “ ΠprλiqArui ` ΞprλiqArui.

In the proof, we set

Πprλiq :“

#

Φprλiq, if |λi| ď n2;
1
rλi
IN`n, if |λi| ą n2,

(56)

and recall that

Ξprλiq “ Gprλiq ´Πprλiq.

Let Q “ I ´ Pr be the orthogonal projection matrix onto the null space of A. It

is elementary to verify that PrΠprλiqA “ ΠprλiqA using the definitions of U and
Pr “ UUT. Hence, continuing from (45), we can derive the following expression

Qrui “ QΞprλiqArui.

Furthermore, we obtain the decomposition

rui “ PIrui ` PJrui `Qrui

“ PIrui ` PJrui `QΞprλiqArui.

It follows that

rUI ´ PI rUI “ PJ rUI ` pQΞprλiqAruiqiPI . (57)
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We aim to bound

}rUk,s ´ PUk,s
rUk,s}2,8 “ max

1ďlďN
}eTl pUk,s ´ PUk,s

rUk,sq}.

where el’s are the canonical vectors in RN . From the definition of

U “ 1
?

2

ˆ

U U
V ´V

˙

from Section 5.3, it is elementary to check that

rUI ´ PI rUI “
1
?

2

˜

rUk,s ´ PUk,s
rUk,s rUk,s ´ PUk,s

rUk,s
rVk,s ´ PVk,s

rVk,s ´prVk,s ´ PVk,s
rVk,sq

¸

.

Hence,

}rUk,s ´ PUk,s
rUk,s}2,8 “ max

1ďlďN

›

›

›
eTl

´

rUI ´ PI rUI
¯
›

›

›
,

where el’s are the canonical vectors in RN`n. Continuing from (57), we see

}rUk,s ´ PUk,s
rUk,s}2,8 “ max

1ďlďN
}eTl

´

rUI ´ PI rUI
¯

}

ď max
1ďlďN

}eTl PJ rUI} ¨ 1t|J|‰0u ` max
1ďlďN

}eTl pQΞprλiqAruiqiPI}.

(58)

Provided that |J | ‰ 0 or equivalently, s ´ k ` 1 ‰ r, the first term on the
right-hand side of (58) can be bounded by

max
1ďlďN

}eTl PJ rUI} “ max
1ďlďN

}eTl UJ ¨ UT
J
rUI}

ď max
1ďlďN

}eTl UJ} ¨ }UT
J
rUI}

ď }U}2,8}UT
J
rUI}F “ }U}2,8

d

ÿ

iPI

}UT
J rui}

2.

By Lemma 34, we further obtain

max
1ďlďN

}eTl PJ rUI} ď 3
?

2
pb` 1q2

pb´ 1q2
}U}2,8

η
?
s´ k ` 1

mintδk´1, δsu
(59)

with probability at least 1´ 20pN ` nq´K .
Next, we bound the second term on the right-hand side of (58):

max
1ďlďN

}eTl pQΞprλiqAruiqiPI} “ max
1ďlďN

d

ÿ

iPI

peTl QΞprλiqAruiq2. (60)

For each i P I,
ˇ

ˇ

ˇ
eTl QΞprλiqArui

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
eTl pI ´ UUTqΞprλiqU ¨DUT

rui

ˇ

ˇ

ˇ

ď

›

›

›
eTl pI ´ UUTqΞprλiqU

›

›

›
¨
›

›DUT
rui
›

› . (61)

Observe from pA ` Eqrui “ rλirui that UDUT
rui “ prλiI ´ Eqrui. Multiplying UT on

both sides, we get the bound

›

›DUT
rui
›

› ď }E} ` |rλi| ď
ˆ

1`
1

b´ 1

˙

|rλi| “
b

b´ 1
|rλi| (62)
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using the assumption }E} “ }E} ď 1
b |λi| and the Weyl’s inequality |rλi| ě |λi| ´

}E} ě pb´ 1q}E}.
To estimate

›

›

›
eTl pI ´ UUTqΞprλiqU

›

›

›
ď

›

›

›
eTl ΞprλiqU

›

›

›
`

›

›

›
eTl UUTΞprλiqU

›

›

›

ď

›

›

›
eTl ΞprλiqU

›

›

›
`

›

›

›
U}2,8}UTΞprλiqU

›

›

›
, (63)

we split the index set I into two disjoint sets:

Is :“
 

i P I : |λi| ď n2
(

and Ib :“
 

i P I : |λi| ą n2
(

.

Note that Is or Ib could be the empty set.

Case (1): i P I X Is. In this case,

Ξprλiq “ Gprλiq ´ Φprλiq.

Note that if z P Sσi
specified in (40) for any 1 ď i ď r0, then |z| ě 2bp

?
N `

?
nq

by the supposition of σi. Recall

η “
11b2

pb´ 1q2

a

pK ` 7q logpN ` nq ` 2plog 9qr.

We work on the event E :“ XiPJk,sKXIs
Ei where

Ei :“
!

rσi P Sσli
for some li P J1, r0K

)

X

"

›

›UTΞprσiqU
›

› ď
η

rσ2
i

*

X

#

ˇ

ˇeTl Ξprσiqus
ˇ

ˇ ď
5b2

pb´ 1q2

a

pK ` 7q logpN ` nq

rσ2
i

for 1 ď l ď N ` n, 1 ď s ď r

+

.

(64)

By Theorem 29, Lemma 28 and Lemma 27, the event E holds with probability at

least 1´ 20pN ` nq´K . For i P Jk, sKX Is, rλi “ rσi. It follows immediately that
›

›

›
eTl ΞprλiqU

›

›

›
` }U}2,8

›

›

›
UTΞprλiqU

›

›

›

“

g

f

f

e

2r
ÿ

s“1

´

eTl Ξprλiqus

¯2

` }U}2,8

›

›

›
UTΞprλiqU

›

›

›

ă
18b2

pb´ 1q2

a

rpK ` 7q logpN ` nq

rλ2i
p1` }U}2,8q. (65)

Continuing from (61), (62) and (63), we further have for any i P I X Is,
ˇ

ˇ

ˇ
eTl QΞprλiqArui

ˇ

ˇ

ˇ
ď

2b

b´ 1

γ

|rλi|
p1` }U}2,8q (66)

where we define

γ :“
9b2

pb´ 1q2

a

rpK ` 7q logpN ` nq

for the sake of brevity. For i P Jr ` k, r ` sKX Is, rλi “ ´rσi´r. Note that Ξprλiq „
´Ξprσi´rq since the distribution of E is symmetric. The bound (66) still holds.

Case (2): i P I X Ib. In this case,

Ξprλiq “ Gprλiq ´
1

rλi
IN`n.
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By Weyl’s inequality, |rλi| ě n2 ´ }E} ě 4p
?
N `

?
nq for every i P Ib, we apply

Lemma 30 to get

}Ξprλiq} ď
2}E}
rλ2i

.

As a result,
›

›

›
eTl ΞprλiqU

›

›

›
` }U}2,8

›

›

›
UTΞprλiqU

›

›

›
ď p1` }U}2,8q}Ξprλiq} ď

2}E}
rλ2i

p1` }U}2,8q.

Continuing from (61) and (63), we further have

ˇ

ˇ

ˇ
eTl QΞprλiqArui

ˇ

ˇ

ˇ
ď

2b

b´ 1

}E}
|rλi|

p1` }U}2,8q. (67)

Note by Weyl’s inequality, for i P Jk, sK, |rλi| ě b´1
b σi and for i P Jr ` k, r ` sK,

|rλi| ě
b´1
b σi´r. Continuing from (60) with (66) and (67), we conclude that

max
1ďlďN

›

›

›
eTl pQΞprλiqAruiqiPI

›

›

›

ď 2
?

2
b2

pb´ 1q2
p1` }U}2,8q

g

f

f

e

ÿ

iPJk,sK,σiďn2

γ2

σ2
i

`
ÿ

iPJk,sK,σiąn2

}E}2

σ2
i

.

Note that }E} ď 2p
?
N `

?
nq ď 4

?
n. Inserting the above estimate and (59) into

(58) yields that

›

›

›

rUk,s ´ PUk,s
rUk,s

›

›

›

2,8
ď 3

?
2
pb` 1q2

pb´ 1q2
}U}2,8

η
?
s´ k ` 1

mintδk´1, δsu
1ts´k`1‰ru

`
2
?

2b2

pb´ 1q2
p1` }U}2,8q

g

f

f

e

ÿ

iPJk,sK,σiďn2

γ2

σ2
i

`
ÿ

iPJk,sK,σiąn2

16n

σ2
i

.

This concludes the proof.

6.3. Proof of Theorem 14. The proof strategy for Theorem 14 mirrors that of
Theorem 13. We provide a brief outline below.

First, we estimate
›

›

›
xTprUk,s ´ PUk,s

rUk,sq
›

›

›
for a unit vector x P RN . Let a “

pxT, 0qT be a unit vector in RN`n. Following the same line of the above proof, we
first observe that

›

›

›
xTprUk,s ´ PUk,s

rUk,sq
›

›

›
“

›

›

›
aTp rUI ´ PI rUIq

›

›

›
.

Using the same proof as that of (58), one gets
›

›

›
aTp rUI ´ PI rUIq

›

›

›
ď }aTPJ rUI}1t|J|‰0u ` }a

TpQΞprλiqAruiqiPI}. (68)

For the first term on the right-hand side of (68), following the same line as (59),
we have with probability at least 1´ 20pN ` nq´K that

}aTPJ rUI} ď 3
?

2
pb` 1q2

pb´ 1q2
}aTU}

η
?
s´ k ` 1

mintδk´1, δsu
1t|J|‰0u.
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For the second term on the right-hand side of (68), using the similar arguments as
(60), we also get with probability at least 1´ 20pN ` nq´K that

}aTpQΞprλiqAruiqiPI} ď
2
?

2b2

pb´ 1q2
p1` }aTU}q

g

f

f

e

s
ÿ

i“k

γ2

σ2
i

.

Combining the above estimates and noting that }aTU} “ }xTU}, we conclude

›

›

›
xTprUk,s ´ PUk,s

rUk,sq
›

›

›
ď3
?

2
pb` 1q2

pb´ 1q2
}xTU}

η
?
s´ k ` 1

mintδk´1, δsu
1ts´k`1‰ru

`
2
?

2b2

pb´ 1q2
p1` }xTU}q

g

f

f

e

s
ÿ

i“k

γ2

σ2
i

with probability at least 1´ 40pN ` nq´K .

Next, we turn to the estimation of
ˇ

ˇ

ˇ
xTprUk,s ´ PUk,s

rUk,sqy
ˇ

ˇ

ˇ
. Set b “ pyT, 0qT P

R2pk´s`1q. It is elementary to check that
ˇ

ˇ

ˇ
xTprUk,s ´ PUk,s

rUk,sqy
ˇ

ˇ

ˇ
“
?

2
ˇ

ˇ

ˇ
aTp rUI ´ PI rUIqb

ˇ

ˇ

ˇ
.

Using the decomposition in (57), we get
ˇ

ˇ

ˇ
aTp rUI ´ PI rUIqb

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
aTPJ rUIb

ˇ

ˇ

ˇ
1t|J|‰0u `

ˇ

ˇ

ˇ
aTpQΞprλiqAruiqiPIb

ˇ

ˇ

ˇ
. (69)

When |J | ‰ 0, taking the definitions of a,b into consideration, we can derive an
upper bound for the first term on the right-hand side of equation (69):

ˇ

ˇ

ˇ
aTPJ rUIb

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
aTUJ ¨ UT

J
rUIb

ˇ

ˇ

ˇ
ď }aTUJ} ¨ }UT

J
rUIb} “ }xTUJ0}

›

›

›

›

›

ÿ

iPI0

yiUT
J rui

›

›

›

›

›

where J0 :“ J1, k´1KY Js`1, rK and I0 :“ Jk, sK. By Lemma 34, we further obtain
for each i P I0,

}UT
J rui} ď 3

pb` 1q2

pb´ 1q2
η

mintδk´1, δsu

with probability at least 1 ´ 20pN ` nq´K . By Cauchy-Schwartz inequality, we
further obtain

ˇ

ˇ

ˇ
aTPJ rUIb

ˇ

ˇ

ˇ
ď 3

pb` 1q2

pb´ 1q2
}xTU}

η
a

}y}0
mintδk´1, δsu

(70)

with probability at least 1´ 20pN ` nq´K .
For the second term on the right-hand side of equation (69), we start with

ˇ

ˇ

ˇ
aTpQΞprλiqAruiqiPIb

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPI0

yia
TQΞprλiqArui

ˇ

ˇ

ˇ

ˇ

ˇ

. (71)

For each i P I0, similar to (61), we have
ˇ

ˇ

ˇ
aTQΞprλiqArui

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
aTpI ´ UUTqΞprλiqU ¨DUT

rui

ˇ

ˇ

ˇ

ď

›

›

›
aTpI ´ UUTqΞprλiqU

›

›

›
¨
›

›DUT
rui
›

› .
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Note that, by (62),
›

›DUT
rui
›

› ď
b

b´ 1
|rλi|.

The estimation of
›

›

›
aTpI ´ UUTqΞprλiqU

›

›

›
ď

›

›

›
aTΞprλiqU

›

›

›
`

›

›

›
aTUUTΞprλiqU

›

›

›

ď

›

›

›
aTΞprλiqU

›

›

›
` }xTU}}UTΞprλiqU}

“

g

f

f

e

2r
ÿ

s“1

´

aTΞprλiqus

¯2

` }xTU}}UTΞprλiqU}

ă
18b2

pb´ 1q2

a

rpK ` 7q logpN ` nq

rλ2i
p1` }xTU}q “

2γ

rλ2i
p1` }xTU}q

follows the same line as those of (63) and (65) with el replaced by the unit vector a.

In particular, combined with |rλi| ě
b´1
b σi for each i P I0 from the Weyl’s inequality,

we obtain
ˇ

ˇ

ˇ
aTQΞprλiqArui

ˇ

ˇ

ˇ
ď

›

›

›
aTpI ´ UUTqΞprλiqU

›

›

›
¨
›

›DUT
rui
›

›

ď
2b

b´ 1

γ

|rλi|
p1` }xTU}q ď

2b2

pb´ 1q2
γ

σi
p1` }xTU}q

holds with probability at least 1´ 20pN ` nq´K . Continuing from (71), we have

ˇ

ˇ

ˇ
aTpQΞprλiqAruiqiPIb

ˇ

ˇ

ˇ
ď

2b2

pb´ 1q2
γp1` }xTU}q

s
ÿ

i“k

|yi|

σi
. (72)

Finally, inserting (70) and (72) back into (69), we obtain that
ˇ

ˇ

ˇ
xTprUk,s ´ PUk,s

rUk,sqy
ˇ

ˇ

ˇ
“
?

2
ˇ

ˇ

ˇ
aTp rUI ´ PI rUIqb

ˇ

ˇ

ˇ

ď 3
?

2
pb` 1q2

pb´ 1q2
}xTU}

η
a

}y}0
mintδk´1, δsu

1ts´k`1‰ru

`
2
?

2b2

pb´ 1q2
γp1` }xTU}q

s
ÿ

i“k

|yi|

σi

holds with probability at least 1´ 40pN ` nq´K .

6.4. Proof of Theorem 16. The proof of Theorem 16 follows largely the proof of
Theorem 13. We sketch the proof and focus on the difference. We start with the
decomposition (45):

rui “ ΠprλiqArui ` ΞprλiqArui

and set

Πprλiq :“

#

Φprλiq, if |λi| ď n2;
1
rλi
IN`n `

E
rλ2
i

, if |λi| ą n2.
(73)

The definition of Πprλiq differs from the one given in (56) when |λi| ą n2. We adopt
this definition to achieve more precise control over the error term by considering

the weights |rλi|.
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Let Q “ I ´ Pr be the orthogonal projection matrix onto the null space of A.
Using the same derivation as in the beginning of the proof of Theorem 13, we obtain
the decomposition

rλirui “ PIrλirui ` PJrλirui `QΞprλiqArλirui

and hence

rUI rDI ´ PI rUI rDI “ PJ rUI rDI ` pQΞprλiqArλiruiqiPI . (74)

It can be verified using the definitions of rUI , rDI and PI “ rUI rUT
I that

rUI rDI ´ PI rUI rDI “
1
?

2

˜

rUk,s rDk,s ´ PUk,s
rUk,s rDk,s ´prUk,s rDk,s ´ PUk,s

rUk,s rDk,sq

rVk,s rDk,s ´ PVk,s
rVk,s rDk,s

rVk,s rDk,s ´ PVk,s
rVk,s rDk,s.

¸

Therefore, combining (74), we observe that

}rUk,s rDk,s ´ PUk,s
rUk,s rDk,s}2,8 “ max

1ďiďN
}eTl p

rUI rDI ´ PI rUI rDIq}

“ max
1ďiďN

}eTl pPJ rUI rDI ` pQΞprλiqArλiruiqiPIq}

ď max
1ďiďN

}eTl PJ rUI rDI}1|J|‰0 ` max
1ďiďN

}eTl pQΞprλiqArλiruiqiPIq}.

(75)

The first term on the right-hand side of (75) can be bounded similarly as that of
(59) using Lemma 34: if |J | ‰ 0, then

max
1ďlďN

}eTl PJ rUI rDI} “ max
1ďlďN

}eTl UJ ¨ UT
J
rUI rDI}

ď max
1ďlďN

}eTl UJ} ¨ }UT
J
rUI rDI}

ď }U}2,8}UT
J
rUI rDI}F “ }U}2,8

d

ÿ

iPI

rλ2i }UT
J rui}

2

ď 3
?

2
pb` 1q2

pb´ 1q2
}U}2,8

ησk
?
s´ k ` 1

mintδk´1, δsu

with probability at least 1´ 20pN ` nq´K .
The bound of the second term on the right-hand side of (75) proceeds in a similar

manner to that of (60):

max
1ďiďN

}eTl pQΞprλiqArλiruiqiPIq} “ max
1ďlďN

d

ÿ

iPI

rλ2i pe
T
l QΞprλiqAruiq2. (76)

For each i P I, we first establish the following bound using (61), (62) and (63):

|rλi| ¨
ˇ

ˇ

ˇ
eTl QΞprλiqArui

ˇ

ˇ

ˇ
ď

b

b´ 1
rλ2i

´

}eTl ΞprλiqU} ` }U}2,8}UTΞprλiqU}
¯

. (77)

We then differentiate the cases by splitting the discussion according to whether
i P I X Is or i P I X Ib, where

Is :“
 

i P I : |λi| ď n2
(

and Ib :“
 

i P I : |λi| ą n2
(

.

If i P I X Is, then by (66), we immediately obtain

|rλi| ¨
ˇ

ˇ

ˇ
eTl QΞprλiqArui

ˇ

ˇ

ˇ
ď

2b

b´ 1
γp1` }U}2,8q (78)
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with probability at least 1´ 20pN ` nq´K .
If i P I X Ib, then the only difference from the proof of (67) is that

Ξprλiq “ Gprλiq ´
1

rλi
IN`n ´

E
rλ2i

and by Lemma 30, we have

}Ξprλiq} ď
2}E}2

|rλi|3
.

It follows that
›

›

›
eTl ΞprλiqU

›

›

›
` }U}2,8

›

›

›
UTΞprλiqU

›

›

›
ď p1` }U}2,8q}Ξprλiq} ď

2}E}2

|rλi|3
p1` }U}2,8q.

Continuing from (77), we further get

|rλi| ¨
ˇ

ˇ

ˇ
eTl QΞprλiqArui

ˇ

ˇ

ˇ
ď

2b

b´ 1

}E}2

|rλi|
p1` }U}2,8q. (79)

Note by Weyl’s inequality, for i P Jk, sK, |rλi| ě b´1
b σi and for i P Jr ` k, r `

sK, |rλi| ě b´1
b σi´r. Inserting (78) and (79) back into (76), we obtain that with

probability at least 1´ 20pN ` nq´K ,

max
1ďiďN

}eTl pQΞprλiqArλiruiqiPIq}

ď
2
?

2b2

pb´ 1q2
p1` }U}2,8q

g

f

f

eγ2ps´ k ` 1q `
ÿ

iPJk,sK,σiąn2

}E}2

σi

ď
2
?

2b2

pb´ 1q2
p1` }U}2,8q

a

γ2ps´ k ` 1q ` 16,

where we used the crude estimate
ÿ

iPJk,sK,σiąn2

}E}2

σi
ď n

16n

n2
“ 16.

This concludes the proof.

7. Proofs of Theorems 8, 9 and 10

7.1. Proof of Theorem 8. By the min-max theorem, for an N ˆn matrix S, the
jth largest singular value of S is

σjpSq “ max
WPRN ,dimpW q“j
KPRn,dimpKq“j

min
px,yqPWˆK
}x}“}y}“1

xTSy. (80)

For the lower bound (9) of rσk, by (80),

rσk ě min
px,yqPUkˆVk

}x}“}y}“1

xT pA` Eqy ě σk ´ max
px,yqPUkˆVk

}x}“}y}“1

|xTEy|.

Note that

}UTk EVk} “ max
px,yqPUkˆVk

}x}“}y}“1

|xTEy|.

Our assumption immediately yields that rσk ě σk´ t with probability at least 1´ε.
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For the upper bound (10) of rσk, by (80),

σk ě rσk ´ max
px,yqP rUkˆ rVk

}x}“}y}“1

|xTEy|. (81)

It is enough to bound the second term on the right side. For any unit vectors

x P rUk and y P rVk, we decompose x “ PUKx ` UUTx and y “ PV Ky ` V V T ry. It
follows from triangle inequality that

|xTEy| ď }PUKx} ¨ }PV Ky} ¨ }E} ` p}PUKx} ` }PV Ky}q}E} ` }U
TEV }.

To bound the term }PUKx}, first notice by Cauchy-Schwartz inequality,

max
xP rUk,}x}“1

}PUKx} ď
?
k max

1ďsďk
}PUKrus}.

Next, multiplying PUK on the left side of the equation pA ` Eqrvs “ rσsrus, we get
PUKErvs “ rσsPUKrus. It follows that

max
1ďsďk

}PUKrus} ď }E}{rσk (82)

and thus

max
xP rUk,}x}“1

}PUKx} ď
?
k}E}{rσk.

The same calculation leads to

max
yP rVk,}y}“1

}PV Ky} ď
?
k}E}{rσk.

Therefore,

max
px,yqP rUkˆ rVk

}x}“}y}“1

|xTEy| ď 2
?
k
}E}2

rσk
` k

}E}3

rσ2
k

` }UTEV }. (83)

Since }UTEV } ď L and }E} ď B with probability at least 1´ ε, by (81) and (83),
we obtain, with probability at least 1´ ε

rσk ď σk ` 2
?
k
B2

rσk
` k

B3

rσ2
k

` L.

7.2. Proof of Theorem 9. In the proof, we work on the event

Ω :“ t}E} ď B and }UTEV } ď Lu.

By the supposition, Ω holds with probability at least 1´ε. Observe that }UTk EVk} ď
}UTEV } ď L. Using (9), the lower bound for rσk, together with δk ě 2L, we have

rσk ě σk ´ L ě σk{2 ą 0

and

rσk ´ σk`1 “ rσk ´ σk ` δk ě δk ´ L ě δk{2.

From (25) and triangle inequality, we see

~ sin =pUk, rUkq~ “ ~PUKk P rUk
~ ď ~PUKP rUk

~ ` 1tkăru~PUk`1,r
P

rUk
~. (84)

We first bound the first term on the right-hand side of (84). Suppose PUK “ U0U0
T

where the columns of U0 are an orthonormal basis of the subspace UK. Then

~PUKP rUk
~ “ ~UT

0
rUk~.
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Multiplying UT
0 on the both sides of pA`EqrVk “ rUk rDk, we see UT

0 E
rVk “ UT

0
rUk rDk

and hence, UT
0
rUk “ UT

0 E
rVk rD

´1
k . It follows that

~PUKP rUk
~ “ ~UT

0 E
rVk rD

´1
k ~ ď ~U

T
0 E

rVk~} rD
´1
k } “

~PUKEP rVk
~

rσk
. (85)

In particular, for the operator norm, we have

}PUKP rUk
} ď

}E}

rσk
. (86)

We proceed to bound the second term on the right-hand side of (84). It suffices
to consider k ă r. Observe that

~PUk`1,r
P

rUk
~ “ ~Uk`1,r

T
rUk~ ď }Uk`1,r

T
rUk}˚

ď

b

rankpUk`1,r
T
rUkq}Uk`1,r

T
rUk}F

ď
a

mintk, r ´ ku

g

f

f

e

k
ÿ

i“1

}Uk`1,r
T
rui}2.

Specially, for the operator norm, we have

}PUk`1,r
P

rUk
} ď }Uk`1,r

T
rUk}F “

g

f

f

e

k
ÿ

i“1

}Uk`1,r
T
rui}2.

It remains to bound }UT
k`1,rrui} for 1 ď i ď k. Multiplying UT

k`1,r on both sides

of pA` Eqrvi “ rσirui, we get

Dk`1,rV
T
k`1,rrvi ` U

T
k`1,rErvi “ rσiU

T
k`1,rrui,

which yields

rσiDk`1,rV
T
k`1,rrvi “ rσ2

iU
T
k`1,rrui ´ rσiU

T
k`1,rErvi. (87)

Similarly, multiplying V T
k`1,r on both sides of pAT ` ETqrui “ rσirvi, we also get

Dk`1,rU
T
k`1,rrui ` V

T
k`1,rE

T
rUi “ rσiV

T
k`1,rrvi,

which implies

rσiDk`1,rV
T
k`1,rrvi “ D2

k`1,rU
T
k`1,rrui `Dk`1,rV

T
k`1,rE

T
rui. (88)

Combining (87) and (88), one has

prσ2
i I ´D

2
k`1,rqU

T
k`1,rrui “ rσiU

T
k`1,rErvi `Dk`1,rV

T
k`1,rE

T
rui.

As a result, by noting rσ2
i I ´D

2
k`1,r “ diagprσ2

i ´ σ
2
k`1, ¨ ¨ ¨ , rσ

2
i ´ σ

2
rq, we obtain the

following bound

}UT
k`1,rrui} ď

rσi}U
T
k`1,rErvi} ` σk`1}V

T
k`1,rE

T
rui}

rσ2
i ´ σ

2
k`1

ď
maxt}UT

k`1,rErvi}, }V
T
k`1,rE

T
rui}u

rσk ´ σk`1
. (89)

Now we turn to bound the numerator of the above expression. Decompose rui “
PUrui ` PUKrui. Then

V T
k`1,rE

T
rui “ V T

k`1,rE
TUUT

rui ` V
T
k`1,rE

TPUKrui
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and

}V T
k`1,rE

T
rui} ď }V

T
k`1,rE

TU} ` }ET} ¨ }PUKrui}

ď }UTEV } `
}E}2

rσk
.

The last inequality above follows from }PUKrui} ď }PUKP rUk
} and by applying (86).

Likewise, we also have

}UT
k`1,rErvi} ď }U

TEV } `
}E}2

rσk
.

Continuing from (89), we see

}UT
k`1,rrui} ď

}UTEV } ` }E}2{rσk
rσk ´ σk`1

ď 2
}UTEV }

δk
` 4

}E}2

δkσk

by plugging in rσk ´ σk`1 ě δk{2 and rσk ě σk{2. Consequently,

~PUk`1,r
P

rUk
~ ď

a

mintk, r ´ ku

g

f

f

e

k
ÿ

i“1

}Uk`1,r
T
rui}2

ď 2
a

kmintk, r ´ ku

ˆ

}UTEV }

δk
` 2

}E}2

δkσk

˙

.

In particular, for the operator norm,

}PUk`1,r
P

rUk
} ď

g

f

f

e

k
ÿ

i“1

}Uk`1,r
T
rui}2 ď 2

?
k

ˆ

}UTEV }

δk
` 2

}E}2

δkσk

˙

.

Combining the above estimates with (85), and considering (84), we ultimately
arrive at

~ sin =pUk, rUkq~ ď 2
a

kmintk, r ´ ku

ˆ

}UTEV }

δk
` 2

}E}2

δkσk

˙

`
~PUKEP rVk

~

rσk

ď 2
a

kmintk, r ´ ku

ˆ

}UTEV }

δk
` 2

}E}2

δkσk

˙

` 2
k}E}

σk
.

More specifically, for the operator norm, we have

} sin =pUk, rUkq} ď 2
?
k

ˆ

}UTEV }

δk
` 2

}E}2

δkσk

˙

1tkăru ` 2
}E}

σk
.

By applying the result to AT and AT `ET, we observe that the same bounds also

hold for sin =pVk, rVkq. This concludes the proof.

7.3. Proof of Theorem 10. We first bound }UTEV }. By a standard ε-net argu-
ment (for example, Exercise 4.4.3. from [70]), for any 1

4 -nets N1 and N2 of the unit
sphere in Rr, we have

}UTEV } ď 2 sup
xPN1,yPN2

xTUTEV y.
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Besides, |Ni| ď 9r for i “ 1, 2 (see [70, Corollary 4.2.13.]). Note that for every
x P N1 and y P N2, by Cauchy-Schwartz inequality,

|xTUTEV y| “

ˇ

ˇ

ˇ

ˇ

ˇ

r
ÿ

i,j“1

xiyju
T
i Evj

ˇ

ˇ

ˇ

ˇ

ˇ

ď

r
ÿ

i,j“1

|xiyj | max
1ďi,jďr

ˇ

ˇuTi Evj
ˇ

ˇ ď r max
1ďi,jďr

|uTi Evj |.

Hence, for t ą 0,

Pp}UTEV } ě tq ď P
ˆ

sup
xPN1,yPN2

xTUTEV y ě
t

2

˙

ď 92rP
ˆ

max
1ďi,jďr

|uTi Evj | ě
t

2

1

r

˙

ď r292rf

ˆ

t

2r

˙

.

Likewise, we also get that for t0 ą 0,

Pp}UT
k EVk} ď t0q ě 1´ k292kf

ˆ

t0
2k

˙

.

Conditioning on t}UT
k EVk} ď t0 “ δk{2u, we can apply (9) from Theorem 8 to

obtain

rσk ´ σk`1 ě σk ´ σk`1 ´ t0 “ δk ´ t0 “ δk{2.

Hence, the event

Ω0 :“ t}UTEV } ď tu X trσk ´ σk`1 ě δk{2u

holds with probability at least

1´ r292rf

ˆ

t

2r

˙

´ k292kf

ˆ

δk
4k

˙

.

Going through the same lines of proof of Theorem 9 on the event Ω0, we prove the
theorem.

8. Proof of Theorem 18

We consider the model (16) and rewrite

EpXq “ pθz1 , ¨ ¨ ¨ , θznq “ pθ1, ¨ ¨ ¨ , θkqZT,

where Z P t0, 1unˆk with entry Zij “ 1 if zi “ j and Zij “ 0 otherwise. It is clear
that the information regarding the cluster labels z is entirely encoded within Z. Ad-
ditionally, let D “ diagpd1, ¨ ¨ ¨ , dkq where di represents the cluster size associated
with center θi. Consequently, the matrix ZD´1{2 has orthonormal columns.

Given that θi’s could be colinear, the rank of EpXq or pθ1, ¨ ¨ ¨ , θkq, denoted as
r, could be smaller than the number of clusters k. Consider the SVD of

pθ1, ¨ ¨ ¨ , θkqD
1{2 “ UΛWT,

where Λ is a kˆk diagonal matrix with rank r and W is a kˆk orthogonal matrix.
Observe that if we denote the SVD of EpXq as EpXq “ UΣV T with U P Rpˆk and
V P Rnˆk, then the following relationship emerges:

EpXq “ pθ1, ¨ ¨ ¨ , θkqD1{2pZD´1{2qT “ UΛpZD´1{2W qT “ UΣV T.
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Therefore, Σ “ Λ “ diagpσ1, ¨ ¨ ¨ , σr, 0, ¨ ¨ ¨ , 0q and V “ ZD´1{2W . Note that the
choice of U, V is not unique and we can only decide U or V up to an orthogonal
transformation.

Next, we show that the geometric relationship among the columns of EpXq is
preserved among the columns of UTEpXq. Consider the SVD of EpXq “ UΣV T,
where each column θj of EpXq can be expressed as θj “ UΣpV Tqj by denoting
pV Tqj as the column of V T. Let pUTEpXqqj represent the columns of UTEpXq “
pUTθz1 , ¨ ¨ ¨ , U

Tθznq. For any two columns θi and θj of EpXq, we have

}θi ´ θj}
2 “ pθi ´ θjq

Tpθi ´ θjq “
`

pV Tqi ´ pV
Tqj

˘T
Σ2

`

pV Tqi ´ pV
Tqj

˘

Moreover, their corresponding columns pUTEpXqqi and pUTEpXqqj of UTEpXq
satisfy

}pUTEpXqqi ´ pUTEpXqqj}2 “ }UTθi ´ U
Tθj}

2 “ pθi ´ θjq
TUUTpθi ´ θjq

“
`

pV Tqi ´ pV
Tqj

˘T
ΣUTUUTUΣ

`

pV Tqi ´ pV
Tqj

˘

“ }θi ´ θj}
2.

It follows that

}pUTEpXqqi ´ pUTEpXqqj} “ }θi ´ θj}.
Therefore, if i, j P rns belong to the same cluster, then }pUTEpXqqi´pUTEpXqqj} “
0. On the other hand, if i, j P rns belong to the distinct clusters, then }pUTEpXqqi´
pUTEpXqqj} ě ∆.

The main step of the proof, as explained in Section 4.1, is to prove (17). Specif-
ically, we aim to show that

max
1ďjďn

}prUTk Xqj ´ pU
TEpXqqj} ă

1

5
∆ (90)

holds with high probability.
Recall that throughout the paper, we always assume }E} ď 2p

?
n `

?
pq. We

start with the decompositions

UTEpXq “ ΛV T “

ˆ

ΛrV
T
r

0

˙

and

rUTr X “ rΛk rV
T
k “

˜

rΛr rV
T
r

rΛJr`1,kK rV
T
Jr`1,kK

¸

.

Observe that

}rΛJr`1,kK rV
T
Jr`1,kK} ď rσr`1 ď }E} ď

1

20
∆

by Weyl’s inequality and ∆ ě σr ě 20}E} from the supposition. Hence,

max
1ďjďn

}prUTk Xqj ´ pU
TEpXqqj}

ď max
1ďjďn

´

}prΛr rV
T
r qj ´ pΛrV

T
r qj} ` }p

rΛJr`1,kK rV
T
Jr`1,kKqj}

¯

ď max
1ďjďn

}prΛr rV
T
r qj ´ pΛrV

T
r qj} `

1

20
∆

“ max
1ďjďn

}eTj
rVrrΛr ´ e

T
j VrΛr} `

1

20
∆ “ }rVrrΛr ´ VrΛr}2,8 `

1

20
∆



42 KE WANG

ď }rVrrΛr ´ VrrΛr}2,8 ` }VrprΛr ´ Λrq}2,8 `
1

20
∆. (91)

Due to non-uniqueness of the choice of V in the SVD of EpXq, we choose a specified
Vr such that the conclusion of Corollary 17 holds (with b “ 20): that is, with
probability at least 1´ 40pN ` nq´L,

}rVrrΛr ´ VrrΛr}2,8 ď 45r
a

pL` 7q logpn` pqp1` }Vr}2,8q ` 8}Vr}2,8
p
?
n`

?
pq2

σr
.

Note that

}Vr}2,8 ď }V }2,8 “ max
i
}eTi V } “ max

i

g

f

f

e

1

dzi

k
ÿ

j“1

W 2
zi,j

ď
1

?
cmin

ď 1.

Continuing from (91), we further obtain

max
1ďjďn

}prUTk Xqj ´ pU
TEpXqqj}

ď }rVrrΛr ´ VrrΛr}2,8 ` }Vr}2,8}rΛr ´ Λr} `
1

20
∆

ď 90k
a

pL` 7q logpn` pq `
8p
?
n`

?
pq2

?
cminσr

`
2p
?
n`

?
pq

?
cmin

`
1

20
∆

ď
1

20
∆`

1

200
∆`

1

20
∆`

1

20
∆ ă

1

5
∆

by Weyl’s inequality }rΛr´Λr} ď }E} and the suppositions that σr ě 40p
?
n`

?
pq

and

∆ ě max

"

40p
?
n`

?
pq

?
cmin

, 1800k
a

pL` 7q logpn` pq

*

.

This concludes the proof.

Appendix A. Proofs of (26), (27), Proposition 25 and (15)

A.1. Proof of (26). It follows from (23) that for the Schatten p-norm with p ě 2,

min
OPOrˆr

}UO ´ V }2p “ min
OPOrˆr

}pUO ´ V qTpUO ´ V q}p{2

“ min
OPOrˆr

}2Ir ´O
TUTV ´ V TUO}p{2. (92)

Note that the SVD of UTV can be written as OT
1 cos ΘO2 where O1, O2 are orthog-

onal matrices and cos Θ :“ cos =pU, V q “ diagpcos θ1, ¨ ¨ ¨ , cos θrq. Continuing from
(92), by the definition of unitarily invariant norms, we further have

(92) “ min
OPOrˆr

}2Ir ´ cos Θ ¨O2O
TOT

1 ´O1OO
T
2 cos Θ}p{2

ď }2Ir ´ 2 cos Θ}p{2 “ 2

˜

r
ÿ

i“1

p1´ cos θiq
p{2

¸2{p

ď 2

˜

r
ÿ

i“1

sinp θi

¸2{p

“ 2} sin Θ}2p,

where we denote sin Θ :“ sin =pU, V q. In the first inequality, we choose O “ OT
1 O2.

The second inequality follows from 1´ cos θi ď 1´ cos2 θi “ sin2 θi.



GAUSSIAN NOISE: MATRIX PERTURBATION BOUNDS 43

For the lower bound, we still consider

(92) “ min
OPOrˆr

}2Ir ´ cos Θ ¨O2O
TOT

1 ´O1OO
T
2 cos Θ}p{2

“ min
Y POrˆr

}2Ir ´ cos Θ ¨ Y ´ Y T cos Θ}p{2 :“ min
Y POrˆr

}BY }p{2.

Observe that BY is positive semidefinite. To see this, let x be an arbitrary unit
vector in Rr and we have

xTBY x “ 2´ 2xT cos Θ ¨ Y x ě 2p1´ |xT cos Θ ¨ Y x|q ě 2p1´ } cos Θ}q ě 0.

Denote p1 “ p{2 for brevity. We use the following variational formula for the
Schatten norms of positive semidefinite matrices:

}BY }p1 “ max
}X}q1ď1

trpBYXq, (93)

where }X}q1 is the Schatten-q1 norm of X P Rrˆr and 1
p1 `

1
q1 “ 1. To prove (93),

by the Hölder’s inequality for Schatten norms,

max
}X}q1ď1

trpBYXq ď }BY }p1 max
}X}q1ď1

}X}q1 ď }BY }p1 .

On the other hand, taking X “ Bp
1
´1

Y {}Bp
1
´1

Y }q1 ,

max
}X}q1ď1

trpBYXq ě trpBp
1

Y q{}B
p1´1
Y }q1 “ }BY }

p1

p1{}BY }
p1´1
p1 “ }BY }p1 ,

where we used trpBp
1

Y q “ }BY }
p1

p1 since BY is positive semidefinite and }Bp
1
´1

Y }q1 “

}BY }
p1´1
p1 due to 1

p1 `
1
q1 “ 1. This proves (93).

Set S “ sin2 Θ for simplicity and let

X “
Sp

1
´1

}Sp1´1}q1
“

Sp
1
´1

}S}p
1´1
p1

.

We continue from (93):

}BY }p1 ě tr
`

2X ´ cos Θ ¨ Y X ´ Y T cos ΘX
˘

“ 2 trpX ´X cos Θ ¨ Y q

ě 2 ptrpXq ´ }X cos Θ}˚q ,

where we applied the Hölder’s inequality |trpX cos Θ ¨ Y q| ď }Y } ¨ }X cos Θ}˚ “
}X cos Θ}˚. Plugging in X and S, we get

}BY }p1 ě
2

}S}p
1´1
p1

´

trpSp
1
´1q ´ }Sp

1
´1 cos Θ}˚

¯

“
2

} sin2 Θ}p
1´1
p1

˜

r
ÿ

i“1

psin θiq
2pp1´1qp1´ cos θiq

¸

.

Note that } sin2 Θ}p
1
´1

p1 “ } sin Θ}
2pp1´1q
2p1 and

1´ cos θi “ 2 sin2
pθi{2q “

sin2 θi
2 cos2pθi{2q

ě
1

2
sin2 θi.

We further obtain

}BY }p1 ě
1

} sin Θ}
2pp1´1q
2p1

r
ÿ

i“1

psin θiq
2p1 “

} sin Θ}2p
1

2p1

} sin Θ}
2pp1´1q
2p1

“ } sin Θ}22p1 “ } sin Θ}2p.
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Therefore,

(92) “ min
Y POrˆr

}BY }p{2 ě } sin Θ}2p.

This completes the proof of (26).

A.2. Proof of (27). For simplicity, denote cos Θ “ cos =pU, V q and sin Θ “

sin =pU, V q. Note that for any orthogonal matrices Y,Z P Rrˆr,

~UY ZT ´ V ~ “ ~UY ´ V Z~.

We use [21, Theorem VII.1.8]: there exist rˆ r orthogonal matrices Y, Z and nˆn
orthogonal matrix Q such that if 2r ď n, then

QUY “

¨

˝

Ir
0
0

˛

‚ and QUZ “

¨

˝

cos Θ
sin Θ

0

˛

‚.

Hence,

min
OPOrˆr

~UO ´ V ~ ď ~UY ZT ´ V ~ “ ~QUY ´QV Z~ “

�

�

�

�

ˆ

Ir ´ cos Θ
´ sin Θ

˙
�

�

�

�

.

If 2r ą n, then

QUY “

¨

˝

In´r 0
0 I2r´n
0 0

˛

‚ and QUZ “

¨

˝

cos Θ1 0
0 I2r´n

sin Θ1 0

˛

‚,

where Θ1 is a diagonal matrix composed of the largest n´ r diagonal entries of Θ
(note that the remaining diagonal entries of Θ are all zero). Therefore, by unitary
equivalent, we still have

min
OPOrˆr

~UO ´ V ~ ď ~UY ZT ´ V ~ “ ~QUY ´QV Z~ “

�

�

�

�

ˆ

Ir ´ cos Θ
´ sin Θ

˙
�

�

�

�

. (94)

Note that the matrix on the right-hand side of (94) has singular values

b

p1´ cos θiq2 ` sin2 θi “ 2 sin

ˆ

θi
2

˙

for i “ 1, ¨ ¨ ¨ , r. Then by Theorem 21,

min
OPOrˆr

~UO ´ V ~ ď fp2 sinpθ1{2q, ¨ ¨ ¨ , 2 sin pθr{2qq

for the symmetric gauge function f associated with the norm. Combining the above
fact with the inequality sinpθ{2q “ 1

2
sin θ

cospθ{2q ď
sin θ?

2
for θ P r0, π{2s and Theorem

23, we get the bound

min
OPOrˆr

~UO ´ V ~ ď fp
?

2 sinpθ1q, ¨ ¨ ¨ ,
?

2 sinpθrqq “ ~
?

2 sin =pU, V q~.
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A.3. Proof of Proposition 25. For any orthogonal matrix O, we first have

}xTpV ´ UOq} ď }xTpV ´ PUV q} ` }x
TpUUTV ´ UOq}

“ }xTpV ´ PUV q} ` }x
TUpUTV ´Oq}

ď }xTpV ´ PUV q} ` }x
TU}}UTV ´O}.

It remains to estimate }UTV ´ O}. Now consider a specific orthogonal matrix
O “ O1O

T
2 , where as per (28), we have UTV “ O1 cos =pU, V qOT

2 . Hence,

}UTV ´O} “ }O1 cos =pU, V qOT
2 ´O1O

T
2 } “ } cos =pU, V q ´ Ir}

“ 1´ cos θr ď 1´ cos2 θr “ sin2 θr “ } sin =pU, V q}2.

Putting these estimates together, we arrive at

}xTpV ´ UOq} ď }xTpV ´ PUV q} ` }x
TU}} sin =pU, V q}2.

The other inequalities can be proved immediately by noting that
ˇ

ˇxTpV ´ UOqy
ˇ

ˇ ď
ˇ

ˇxTpV ´ PUV qy
ˇ

ˇ`
ˇ

ˇxTpUUTV ´ UOqy
ˇ

ˇ

ď
ˇ

ˇxTpV ´ PUV qy
ˇ

ˇ` }xTU}}UTV ´O}

and

}V ´ UO}2,8 ď }V ´ PUV }2,8 ` }UU
TV ´ UO}2,8

ď }V ´ PUV }2,8 ` }U}2,8}U
TV ´O}.

A.4. Proof of (15). As in (28), from the SVD of UT
rUr “ O1 cos =pU, rUrqO

T
2 , we

choose the orthogonal matrix O “ O1O
T
2 . For notational simplicity, let us denote

cos =pU, rUrq “ diagpcos θ1, ¨ ¨ ¨ , cos θrq “ cos Θ.
Using a similar argument as in the proof of Proposition 25, we obtain

}rUr rDr ´ UO rDr}2,8 ď}rUr rDr ´ PU rUr rDr}2,8 ` }U}2,8}pU
T
rUr ´Oq rDr}. (95)

It suffices to establish a bound for }pUT
rUr´Oq rDr} in the second term on the right-

hand side of (95). Such a bound has been previously established in [79, Lemma
15]. To ensure our proof is self-contained, we repeat their proof here and provide
the explicit constants.

Let U0 denote the matrix whose columns are orthonormal and span the comple-
ment of the subspace U . We first show that

O ´ UT
rUr “ 2O1 ¨ sinpΘ{2q ¨ psin Θq´1 sinpΘ{2q ¨OT

3 U
T
0
rUr (96)

for some orthogonal matrix O3. Here sinpΘ{2q “ diagpsinpθ1{2q, ¨ ¨ ¨ , sinpθr{2qq and

psin Θq´1 sinpΘ{2q “ diag

ˆ

sinpθ1{2q

sinpθ1q
, ¨ ¨ ¨ ,

sinpθr{2q

sinpθrq

˙

.

To see (96), since

prUT
r U0qprU

T
r U0q

T “ rUT
r U0U

T
0
rUr “ rUT

r pI ´ UU
TqrUr

“ I ´O2 cos2pΘqOT
2 “ O2 sin2

pΘqOT
2 ,

the SVD of rUT
r U0 is given by

rUT
r U0 “ O2psin ΘqOT

3 (97)
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for some orthogonal matrix O3. Combining (97) with

O ´ UT
rUr “ O1pI ´ cos ΘqOT

2 “ 2O1 sin2
pΘ{2qOT

2 ,

we prove (96) and consequently

pO ´ UT
rUrq rDr “ 2O1 ¨ sinpΘ{2q ¨ psin Θq´1 sinpΘ{2q ¨OT

3 U
T
0
rUr rDr (98)

To bound }pO ´ UT
rUrq rDr}, first observe

} sinpΘ{2q} ď

?
2

2
} sin Θ} and }psin Θq´1 sinpΘ{2q} ď

?
2

2

by the facts that cospθ{2q ě 1{
?

2 and sinpθ{2q “ sin θ
2 cospθ{2q ď

?
2
2 sin θ for θ P

r0, π{2s. Then continuing from (98), we have

}pO ´ UT
rUrq rDr} ď } sin Θ} ¨ }UT

0
rUr rDr}.

It remains to bound }UT
0
rUr rDr}. Note that rUr rDr “ rArVr. Multiplying UT

0 on both
sides and using UT

0 A “ 0, we get the desired bound

}UT
0
rUr rDr} “ }U

T
0
rArVr} “ }U

T
0 pA` Eq

rVr} “ }U
T
0 E

rVr} ď }E}.

This completes the proof.

Appendix B. Proofs of Lemma 27 and Lemma 28

B.1. Proof of Lemma 27. By the rotational invariance of E and definition of E ,
we observe that for any orthogonal matrices

O1 “

ˆ

O1 0
0 O2

˙

, O2 “

˜

pO1 0

0 pO2

¸

where O1, pO1 P RNˆN and O2, pO2 P Rnˆn are orthogonal matrices,

O1EO2 „ E .
Consequently,

xT pGpzq ´ Φpzqqy „ pO1xq
T pGpzq ´ Φpzqq pO2yq.

Hence, it suffices to assume x “ px1, 0 ¨ ¨ ¨ , 0, xN`1, 0, ¨ ¨ ¨ , 0q
T with x21 ` x

2
N`1 “ 1

and y “ py1, 0 ¨ ¨ ¨ , 0, yN`1, 0, ¨ ¨ ¨ , 0q
T with y21 ` y

2
N`1 “ 1. Furthermore,

xT pGpzq ´ Φpzqqy

“ x1y1pG11pzq ´ Φ11pzqq ` xN`1yN`1pGN`1,N`1pzq ´ ΦN`1,N`1pzqq

` x1yN`1G1,N`1pzq ` xN`1y1GN`1,1pzq. (99)

In order to prove Lemma 27, it suffices to show that for each fixed k P J1, N ` nK,

|Gkkpzq ´ Φkkpzq| ď
2b2

pb´ 1q2

a

pK ` 1q logpN ` nq

|z|2
(100)

with probability at least 1´ 4pN ` nq´pK`1q and for fixed i ‰ j P J1, N ` nK,

|Gijpzq| ď 2
?

2

ˆ

b

b´ 1

˙2
a

pK ` 1q logpN ` nq

|z|2
(101)

with probability at least 1´ 0.5pN ` nq´pK`1q.
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If so, continuing from (99), we find that
ˇ

ˇxT pGpzq ´ Φpzqqy
ˇ

ˇ

ď

˜

2

ˆ

b

b´ 1

˙2

` 2
?

2

ˆ

b

b´ 1

˙2
¸

a

pK ` 1q logpN ` nq

|z|2

ď 5

ˆ

b

b´ 1

˙2
a

pK ` 1q logpN ` nq

|z|2

with probability at least 1 ´ 9pN ` nq´pK`1q. Here, we use the fact that |x1y1| `
|xN`1yN`1| ď 1 by Cauchy-Schwarz inequality. The proofs of Equation (100) and
Equation (101) closely resemble the proof presented in [64, Lemma 28], with only
minor cosmetic modifications. For the sake of brevity, we will omit the detailed
proofs here.

B.2. Proof of Lemma 28. In this section, we prove Lemma 28 using Lemma 27
and a standard ε-net argument.

For convenience, denote ∆pzq :“ Gpzq ´ Φpzq. We first show that for any fixed

z P C with |z| ě 2bp
?
N `

?
nq,

›

›UT∆pzqU
›

› ď 10

ˆ

b

b´ 1

˙2
a

pK ` 1q logpN ` nq ` 2plog 9qr

|z|2

with probability at least 1´ 9pN ` nq´pK`1q.
Let N be the 1{4-net of the unit sphere S2r´1. A simple volume argument (see

for instance [70, Corollary 4.2.13]) shows N can be chosen such that |N | ď 92r.
Furthermore, since for any y P S2r´1, there exists a x P N such that }y´x} ď 1{4,
we have
ˇ

ˇyTUT∆pzqUy
ˇ

ˇ ď
ˇ

ˇxTUT∆pzqUx
ˇ

ˇ`
ˇ

ˇpy ´ xqTUT∆pzqUx
ˇ

ˇ`
ˇ

ˇyTUT∆pzqUpy ´ xq
ˇ

ˇ

ď
ˇ

ˇxTUT∆pzqUx
ˇ

ˇ`
1

2
}UT∆pzqU}.

Therefore, }UT∆pzqU} ď 2 maxxPN
ˇ

ˇxTUT∆pzqUx
ˇ

ˇ and for any K1 ą 0 and p
?
N `

?
nq2 ě 32pK1 ` 1q logpN ` nq, by the union bound,

P

˜

}UT∆pzqU} ě 10

ˆ

b

b´ 1

˙2
a

pK1 ` 1q logpN ` nq

|z|2

¸

ď P

˜

max
xPN

ˇ

ˇxTUT∆pzqUx
ˇ

ˇ ě 5

ˆ

b

b´ 1

˙2
a

pK1 ` 1q logpN ` nq

|z|2

¸

ď 92r`1pN ` nq´pK1`1q,

where in the last inequality, we applied Lemma 27. Now choose K1 “ K` 2 log 9
logpN`nqr

and assume

p
?
N `

?
nq2 ě 32pK1 ` 1q logpN ` nq “ 32pK ` 1q logpN ` nq ` 64plog 9qr.

The conclusion becomes that

}UT∆pzqU} ď 10

ˆ

b

b´ 1

˙2
a

pK ` 1q logpN ` nq ` 2plog 9qr

|z|2

with probability at least 1´ 10pN ` nq´pK`1q.
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In particular, for any z P D “ tz P C : 2bp
?
N `

?
nq ď |z| ď 2n3u,

›

›UT∆pzqU
›

› ď 10

ˆ

b

b´ 1

˙2
a

pK ` 7q logpN ` nq ` 2plog 9qr

|z|2

with probability at least 1´ 9pN ` nq´pK`7q, as long as

p
?
N `

?
nq2 ě 32pK ` 7q logpN ` nq ` 64plog 9qr. (102)

Let N be a 1-net of D. A simple volume argument (see for instance [65, Lemma
3.3]) shows N can be chosen so that |N | ď p1` 8n3q2 ă n7. By the union bound,

max
zPN

|z|2
›

›UT∆pzqU
›

› ď 10

ˆ

b

b´ 1

˙2
a

pK ` 7q logpN ` nq ` 2plog 9qr (103)

with probability at least 1 ´ 9pN ` nq´K . We now wish to extend this bound to
all z P D.

Define the functions

fpzq :“ z2UTGpzqU , gpzq :“ z2UTΦpzqU .

In order to complete the proof, it suffices to show that f and g are 3b2

pb´1q2 -Lipschitz

in D. In other words, we want to show that }fpzq ´ fpwq} ď 3b2

pb´1q2 |z ´ w| and

}gpzq ´ gpwq} ď 3b2

pb´1q2 |z ´ w| for all z, w P D. Indeed, in view of (103), if z P D,

then there exists w P N so that |z ´ w| ď 1, and hence

|z|2
›

›UTGpzqU ´ UTΦpzqU
›

›

ď }fpzq ´ fpwq} ` }fpwq ´ gpwq} ` }gpwq ´ gpzq}

ď
6b2

pb´ 1q2
` |w|2

›

›UTGpwqU ´ UTΦpwqU
›

›

ď
6b2

pb´ 1q2
` 10

ˆ

b

b´ 1

˙2
a

pK ` 7q logpN ` nq ` 2plog 9qr

ă 11

ˆ

b

b´ 1

˙2
a

pK ` 7q logpN ` nq ` 2plog 9qr “ η,

where we used the Lipschitz continuity of f and g in the second inequality. In
the last inequality, we use (102) to obtain a crude bound N ` n ě 32 ¨ 7 logpN `

nq and hence N ` n ě 1600. This implies
a

pK ` 7q logpN ` nq ` 2plog 9qr ě
a

7 logp1600q ` 2plog 9q « 7.5.

It remains to show that f and g are 3b2

pb´1q2 -Lipschitz in D. Recall that we work

on the event where }E} ď 2p
?
N `

?
nq through the proofs. Let z, w P D, and

assume without loss of generality that |z| ě |w| ě 2bp
?
N `

?
nq. Then

}fpzq ´ fpwq} ď }z2UTGpzqU ´ zwUTGpzqU} ` }zwUTGpzqU ´ w2UTGpzqU}
` }w2UTGpzqU ´ w2UTGpwqU}

ď |z|}Gpzq}|z ´ w| ` |w||z ´ w|}Gpzq} ` |w|2|z ´ w|}Gpzq}}Gpwq}

ď
2b

b´ 1
|z ´ w| `

b2

pb´ 1q2
|z ´ w| “

bp3b´ 2q

pb´ 1q2
|z ´ w|

ď
3b2

pb´ 1q2
|z ´ w|,
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where we used the resolvent identity B´1 ´ C´1 “ B´1pC ´ BqC´1, Lemma 26,

and the fact that |w|
|z| ď 1. This shows that f is 3b2

pb´1q2 -Lipschitz in D.

The proof for g is similar. First, by the triangle inequality, we have

}gpzq ´ gpwq}

ď }z2UTΦpzqU ´ zwUTΦpzqU} ` }zwUTΦpzqU ´ w2UTΦpzqU}
` }w2UTΦpzqU ´ w2UTΦpwqU}

ď |z||z ´ w|}UTΦpzqU} ` |w||z ´ w|}UTΦpzqU} ` |w|2}UTpΦpzq ´ ΦpwqqU}.
(104)

Using the explicit expression in (34), we find that

}UTpΦpzq ´ ΦpwqqU} “ max

"

|φ1pzq ´ φ1pwq|

|φ1pzqφ1pwq|
,
|φ2pzq ´ φ2pwq|

|φ2pzqφ2pwq|

*

.

By (32) and the resolvent identity B´1 ´ C´1 “ B´1pC ´BqC´1,

|φ1pzq ´ φ1pwq| “ |z ´ w ´ tr IdpGpzq ´Gpwqq|

“ |z ´ w ´ pz ´ wq tr IdGpzqGpwq|

ď |z ´ w| p1` pN ` nq}Gpzq}}Gpwq}q

ď |z ´ w|

ˆ

1`
b2

pb´ 1q2
pN ` nq

|z||w|

˙

ď

ˆ

1`
1

4pb´ 1q2

˙

|z ´ w|,

where we used Lemma 26 and the facts that N`n
|w| ď

|w|
4b2 and |w|

|z| ď 1. The same

upper bound also holds for |φ2pzq ´ φ2pwq|. Combining these estimates with (36),
we have

}UTpΦpzq ´ ΦpwqqU} ď 1` 1{4pb´ 1q2

p1´ 1{4bpb´ 1qq2
|z ´ w|

|z||w|
.

Notice that }UTΦpzqU} ď 1
1´1{4bpb´1q

1
|z| for any |z| ě 2bp

?
N `

?
nq, which can be

verified using (35) and the bounds in (36). Inserting these bounds into (104) yields
that

}gpzq ´ gpwq} ď
2

1´ 1{4bpb´ 1q
|z ´ w| `

1` 1{4pb´ 1q2

p1´ 1{4bpb´ 1qq2
|z ´ w|

ď
4bp12b3 ´ 24b2 ` 11b` 2q

p4b2 ´ 4b´ 1q2
|z ´ w| ă

3b2

pb´ 1q2
|z ´ w|,

where the last inequality is check via Mathematica. Hence, g is 3b2

pb´1q2 -Lipschitz in

D.

Appendix C. Proof of Lemma 52

In this section, we estimate }UT
J rui} for each i P I “ Jk, sKY Jr` k, r` sK. Recall

the decomposition of rui in (45):

rui “ ΠprλiqArui ` ΞprλiqArui, (105)

where Πpzq is a function to be further specified during the proof, and Ξpzq “
Gpzq ´Πpzq.
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We split the estimation of }UT
J rui} for i P I into two cases: when |λi| is large and

when |λi| is relatively small.
We start with the simpler case when |λi| ą n2{2. We choose

Πprλiq :“
1

rλi
IN`n `

1

rλ2i
E .

We work on the event
max

lPJ1,r0K:σlą
1
2n

2
|rσl ´ σl| ď ηr.

By Lemma 31, this event holds with probability at least 1 ´ pN ` nq´1.5r2pK`4q.

Hence, |rλi| ě |λi| ´ ηr ě 2bp
?
N `

?
nq. We apply Lemma 30 to get

›

›

›
Ξprλiq

›

›

›
“

›

›

›
Gprλiq ´Πprλiq

›

›

›
ď

b

b´ 1

}E}2

|rλi|3
. (106)

Multiplying UT
J on both sides of (105), we obtain the following equation:

UT
J rui “ UT

J ΠprλiqArui ` UT
J ΞprλiqArui.

Plugging in (46) and using the facts UT
J UI “ 0 and UT

J UJ “ I, we further get

UT
J rui “

1

rλi
DJUT

J rui `
1

rλ2i
UT
J EUDUT

rui ` UT
J ΞprλiqUDUT

rui,

which, by rearranging the terms, is reduced to

prλiI ´DJqUT
J rui “

1

rλi
UT
J EUDUT

rui ` rλiUT
J ΞprλiqUDUT

rui.

Hence,

min
jPJ

|rλi ´ λj | ¨ }UT
J rui} ď

1

|rλi|
}UTEU} ¨ }DUT

rui} ` |rλi|}Ξprλiq} ¨ }DUT
rui}.

Note that }DUT
rui} ď }E} ` |rλi| ď b

b´1 |
rλi| as in (62). Inserting (106) into the

above inequality, we arrive at

min
jPJ

|rλi ´ λj | ¨ }UT
J rui} ď

b

b´ 1
}UTEU} ` b2

pb´ 1q2
}E}2

|rλi|
. (107)

For the remaining arguments, we work on the event

F :“
 

}UTEU} ď 2
?
r `

a

2pK ` 7q logpN ` nq
(

.

The following lemma is proved in [63, Lemma 18].

Lemma 35. Let K be an arbitrary positive constant. With probability at least
1´ 2pN ` nq´K , we have

}UTEU} ď 2
?
r `

a

2K logpN ` nq.

Therefore, the event F holds with probability at least 1 ´ 2pN ` nq´pK`7q. We
continue the estimation of }UT

J rui} from (107). Note that

}UTEU} ď 2
?
r `

a

2pK ` 7q logpN ` nq ă η.

Also, }E}2{|rλi| ď 4p2
?
nq2{n2 ă η where we used the crude bound |rλi| ě

1
4n

2 by
Weyl’s inequality. It follows that

min
jPJ

|rλi ´ λj | ¨ }UT
J rui} ď

bp2b´ 1q

pb´ 1q2
η. (108)
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To bound the left-hand side of (108), we first consider i P Jk, sK. Then

min
jPJ

|rλi ´ λj | “ min
jPJ1,k´1KYJs`1,rK

|rσi ´ σj | “ mintσk´1 ´ rσi, rσi ´ σs`1u

by |rσi ´ σi| ď ηr and the supposition mintδk´1, δsu ě 75χpbqηr. Next, applying
mintδk´1, δsu ě 75χpbqηr again, we get

min
jPJ

|rλi ´ λj | ě

ˆ

1´
1

75χpbq

˙

mintδk´1, δsu.

It follows from (108) that

}UT
J rui} ď

η

mintδk´1, δsu

ˆ

1´
1

75χpbq

˙´1
bp2b´ 1q

pb´ 1q2

“
75p2b´ 1q3b

pb´ 1q2p296b2 ´ 296b` 75q

η

mintδk´1, δsu

ă 3
pb` 1q2

pb´ 1q2
η

mintδk´1, δsu
(109)

for every i P Jk, sK satisfying λi “ σi ě n2{2. The last inequality was checked
by Mathematica. Finally, for i P Jr ` k, r ` sK such that |λi| ě n2{2, analogous
arguments yield that the same bound

}UT
J rui} ď 3

pb` 1q2

pb´ 1q2
η

mintδk´1, δsu
. (110)

The estimation of }UT
J rui} when |λi| is relatively small is more involved. From

the previous discussion, it suffices to assume there is a certain l0 P J1, r0K for which
σl0 ď n2{2. We claim that there exists an index i0 P J1, r0K such that σj ď n3 for
j ě i0 and σj ą n3 for j ă i0, and

δi0´1 “ σi0´1 ´ σi0 ě 75χpbqηr.

To determine i0, we propose a simple iterative algorithm: start with σ1. If σ1 ď n3,
set i0 “ 1 and terminate the algorithm, since σ0 “ 8 and δ0 “ 8 by definition.
Assume σ1 ą n3 and evaluate σ2. If σ2 ď n3´75χpbqηr, set i0 “ 2 and exit. Assume
σ2 ą n3 ´ 75χpbqηr and evaluate σ3. We continue this process and terminate the
algorithm with i0 “ k unless

σ1 ą n3, σ2 ą n3 ´ 75χpbqηr, ¨ ¨ ¨ , σk ą n3 ´ 75χpbqηr. (111)

Note that the condition (111) cannot hold for k “ l0 because σl0 ď n2{2 ă n3 ´

75χpbqηr, based on the assumption that p
?
N `

?
nq2 ě 32pK ` 7q logpN ` nq `

64plog 9qr. Therefore, i0 must satisfy i0 ď l0 ´ 1.
We shall fix such an index i0 throughout the rest of the proof. We now turn our

attention to estimating }UT
J rui} for i P Jk0, sKY Jr ` k0, r ` sK, where we define

k0 :“ maxtk, i0u

for the sake of notational simplicity. Note that mintδk0´1, δsu ě 75χpbqηr. Fur-
thermore, in this scenario, |λi| ď n3. We take

Πpruiq “ Φpruiq.

Continuing from (45), we have

rui “ ΦprλiqArui ` ΞprλiqArui
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and multiply on the left by UT
J to get

UT
J rui “ UT

J ΦprλiqArui ` UT
J ΞprλiqArui. (112)

Plugging in (46), we further have

UT
J rui “ UT

J ΦprλiqUJDJUT
J rui ` UT

J ΞprλiqUDUT
rui,

where we used UT
J ΦprλiqUI “ 0. Hence,

´

I2pr´s`k´1q ´ UT
J ΦprλiqUJDJ

¯

UT
J rui “ UT

J ΞprλiqUDUT
rui. (113)

We are now in position to bound }UT
J rui}. This can be achieved by obtaining an

upper bound for the right-hand side of (113) and estimating the smallest singular
value of the matrix

I2pr´s`k´1q ´ UT
J ΦprλiqUJDJ (114)

on the left-hand side of (113). We establish these estimates in the following two
steps. Recall that

ξpbq “ 1`
1

2pb´ 1q2
and χpbq “ 1`

1

4bpb´ 1q
.

For each k0 ď i ď s, by Theorem 29, there exists k0 ď li ď s such that rσi P Sσli

specified in (40), and

|ϕprσiq ´ σ
2
li | ď 20ξpbqχpbqηr prσi ` χpbqσliq (115)

with probability at least 1´ 10pN ` nq´K . Denote this event as E1. Furthermore,
on the event E1, by Lemma 28, for every k0 ď i ď s,

›

›UTΞprσiqU
›

› ď
η

rσ2
i

holds with probability at least 1´ 9pN ` nq´K . Let us denote this event as E2.
In the remaining proof, we will work on the event E1 X E2 which holds with

probability at least 1´ 19pN ` nq´K .

Step 1. Upper bound for the right-hand side of (113). We first consider the case

when i P Jk0, sK and rλi “ rσi. Note that UT
J ΞprσiqU is a sub-matrix of UTΞprσiqU .

Thus, using (64) and the fact that the spectral norm of any sub-matrix is bounded
by the spectral norm of the full matrix, we deduce that

}UT
J ΞprσiqU ¨DUT

rui} ď
η

rσ2
i

}DUT
rui}.

Recall the bound in (62):

}DUT
rui} ď

b

b´ 1
rσi (116)

Hence,

›

›UT
J ΞprσiqUDUT

rui
›

› ď
b

b´ 1

η

rσi
. (117)

For the case when i P Jr ` k0, r ` sK, rλi “ ´rσi´r. Observe that

Gp´rσi´rq “ p´rσi´r ´ Eq´1 “ ´prσi´r ` Eq´1 „ ´prσi´r ´ Eq´1 “ ´Gprσi´rq

because the distribution of E is symmetric. Hence

Φp´rσi´rq „ ´Φprσi´rq
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by the definition (30). Repeating the arguments from the previous case, we see that
›

›

›
UT
J ΞprλiqUDUT

rui

›

›

›
ď

b

b´ 1

η

rσi´r
. (118)

Step 2. Lower bound for the smallest singular value of the matrix (114). In fact,
the singular values of the matrix (114) can be calculated explicitly via elementary
linear algebra. The following proposition presents a subtle modification of the one
found in [63, Proposition 10].

Proposition 36. For 1 ď r0 ă r and 1 ď k ď s ď r0, denote the index sets
I :“ Jk, sK Y Jr ` k, r ` sK and J :“ J1, 2rKzI. For any x P R satisfying |x| ą }E},
the singular values of I2pr´s`k´1q ´ UT

J ΦpxqUJDJ are given by
ˇ

ˇ

ˇ

ˇ

b

1` βpxq2σ2
t ˘ |αpxq|σt

ˇ

ˇ

ˇ

ˇ

for t P J1, k ´ 1KY Js` 1, rK.

In order to bound the singular values, we first estimate φ1prσiqφ2prσiq, φ1prσiq and
φ2prσiq for i P Jk0, sK. Since rσi P Sσli

for some li P Jk0, sK where Sσ is defined in

(40), we have

rσi ě σli ´ 20χpbqηr ě

ˆ

1´
χpbq

4b

˙

σli (119)

and

rσi ď χpbqσli ` 20χpbqηr ď χpbq

ˆ

1`
1

4b

˙

σli (120)

by the supposition σli ě 2bp
?
N `

?
nq ` 80bηr.

Observe from (36) that
ˆ

1´
1

4bpb´ 1q

˙

rσi ď φsprσiq ď χpbqrσi for s “ 1, 2. (121)

Using these estimates, we crudely bound

0 ă αprσiq “
1

2

ˆ

1

φ1prσiq
`

1

φ2prσiq

˙

ď
τpbq

rσi
with τpbq :“

ˆ

1´
1

4bpb´ 1q

˙´1

and by (33),

βprσiq “
1

2

ˆ

1

φ1prσiq
´

1

φ2prσiq

˙

“
φ2prσiq ´ φ1prσiq

2φ1prσiqφ2prσiq

“
n´N

rσi

1

2φ1prσiqφ2prσiq
ď
τpbq2

8b2rσi

by noting that rσ2
i ě p2bp

?
N `

?
nqq2 ą 4b2pN ` nq.

We are ready to bound the singular values of I2pr´s`k´1q ´ UT
J ΦprσiqUJDJ . We

start with the case when i P Jk0, sK and rλi “ rσi. In view of Proposition 36, the goal
is to bound

min
tPJ1,k´1KYJs`1,rK

ˇ

ˇ

ˇ

ˇ

b

1` βprσiq2σ2
t ˘ |αprσiq|σt

ˇ

ˇ

ˇ

ˇ

“ min
tPJ1,k´1KYJs`1,rK

ˇ

ˇ

ˇ

ˇ

b

1` βprσiq2σ2
t ´ αprσiqσt

ˇ

ˇ

ˇ

ˇ
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“ min
tPJ1,k´1KYJs`1,rK

ˇ

ˇ

ˇ

ˇ

ˇ

1´ pαprσiq
2 ´ βprσiq

2qσ2
t

a

1` βprσiq2σ2
t ` αprσiqσt

ˇ

ˇ

ˇ

ˇ

ˇ

“ min
tPJ1,k´1KYJs`1,rK

ˇ

ˇ

ˇ
1´

σ2
t

φ1prσiqφ2prσiq

ˇ

ˇ

ˇ

a

1` βprσiq2σ2
t ` αprσiqσt

.

The upper bounds of αprσiq and βprσiq obtained above yield that

b

1` βprσiq2σ2
t ` αprσiqσt ď

d

1`
τpbq4

64b4
σ2
t

rσ2
i

` τpbq
σt
rσi
ď 1` τpbq

ˆ

1`
τpbq

8b2

˙

σt
rσi

for any t P J1, k ´ 1KY Js` 1, rK. Hence,

min
tPJ1,k´1KYJs`1,rK

ˇ

ˇ

ˇ

ˇ

b

1` βprσiq2σ2
t ˘ αprσiqσt

ˇ

ˇ

ˇ

ˇ

ě min
tPJ1,k´1KYJs`1,rK

1

1` τpbq
´

1` τpbq
8b2

¯

σt

rσi

ˇ

ˇ

ˇ

ˇ

φ1prσiqφ2prσiq ´ σ
2
t

φ1prσiqφ2prσiq

ˇ

ˇ

ˇ

ˇ

ě min
tPJ1,k´1KYJs`1,rK

1

1` τpbq
´

1` τpbq
8b2

¯

σt

rσi

|φ1prσiqφ2prσiq ´ σ
2
t |

χpbq2rσ2
i

.

To continue the estimates, we consider the cases t P J1, k ´ 1K and t P Js ` 1, rK
separately.

First, for any t P J1, k ´ 1K, σt ě σi and σt ě σli since i, li P Jk0, sK. By (115),

φ1prσiqφ2prσiq ď σ2
li ` 20ξpbqχpbqηrprσi ` χpbqσliq.

Thus, we obtain

σ2
t ´ φ1prσiqφ2prσiq ě σ2

t ´ σ
2
li ´ 20ξpbqχpbqηrprσi ` χpbqσliq

ě pσt ´ σliqpσt ` σliq ´ 20ξpbqχpbq2ηr

ˆ

`

1`
1

4b

˘

σt ` σli

˙

.

(122)

The last inequality is due to

rσi ď χpbq

ˆ

1`
1

4b

˙

σli ď χpbq

ˆ

1`
1

4b

˙

σt

from (120) and σt ě σli . Since σt ´ σli ě δk´1 ě 75χpbqηr, we further get

σ2
t ´ φ1prσiqφ2prσiq ě

ˆ

1´
4

15
ξpbqχpbq

`

1`
1

4b

˘

˙

δk´1pσt ` σliq ą 0

since 1´ 4
15ξpbqχpbq

`

1` 1
4b

˘

ě 1´ 4
15ξp2qχp2q

`

1` 1
8

˘

« 0.49.
Hence, we further have

min
tPJ1,k´1K

1

1` τpbq
´

1` τpbq
8b2

¯

σt

rσi

|φ1prσiqφ2prσiq ´ σ
2
t |

χpbq2rσ2
i

“
1

χpbq2rσi
min

tPJ1,k´1K

σ2
t ´ φ1prσiqφ2prσiq

rσi ` τpbq
´

1` τpbq
8b2

¯

σt

ě

ˆ

1´
4

15
ξpbqχpbq

`

1`
1

4b

˘

˙

δk´1

χpbq2rσi
min

tPJ1,k´1K

σt ` σli

rσi ` τpbq
´

1` τpbq
8b2

¯

σt
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ě

ˆ

1´
4

15
ξpbqχpbq

`

1`
1

4b

˘

˙

δk´1

χpbq2rσi
min

tPJ1,k´1K

σli ` σt

χpbq
`

1` 1
4b

˘

σli ` τpbq
´

1` τpbq
8b2

¯

σt
.

Note that χpbq
`

1` 1
4b

˘

ě τpbq
´

1` τpbq
8b2

¯

for b ě 2 (checked via Mathematics). We

conclude that

min
tPJ1,k´1K

ˇ

ˇ

ˇ

ˇ

b

1` βprσiq2σ2
t ˘ αprσiqσt

ˇ

ˇ

ˇ

ˇ

ě
1´ 4

15ξpbqχpbq
`

1` 1
4b

˘

χpbq3
`

1` 1
4b

˘

δk´1

rσi
. (123)

Next, for any t P Js ` 1, rK, σt{σli ď 1 and by (119), σt{rσi ď
´

1´ χpbq
4b

¯´1

.

Consequently,

min
tPJs`1,rK

1

1` τpbq
´

1` τpbq
8b2

¯

σt

rσi

|φ1prσiqφ2prσiq ´ σ
2
t |

χpbq2rσ2
i

ě
1

1` τpbq
´

1` τpbq
8b2

¯´

1´ χpbq
4b

¯´1

1

χpbq2
min

tPJs`1,rK

|φ1prσiqφ2prσiq ´ σ
2
t |

rσ2
i

. (124)

By (115),

φ1prσiqφ2prσiq ě σ2
li ´ 20ξpbqχpbqηrprσi ` χpbqσliq.

Using a similar argument as (122), one has

φ1prσiqφ2prσiq ´ σ
2
t ě σ2

li ´ σ
2
t ´ 20ξpbqχpbq2ηr

ˆ

`

1`
1

4b

˘

σt ` σli

˙

ě

ˆ

1´
4

15
ξpbqχpbq

`

1`
1

4b

˘

˙

δspσt ` σliq ą 0

since σli ´ σt ě δs ě 75χpbqηr. Continuing from (124), we further get

min
tPJs`1,rK

ˇ

ˇ

ˇ

ˇ

b

1` βprσiq2σ2
t ˘ αprσiqσt

ˇ

ˇ

ˇ

ˇ

ě
1´ 4

15ξpbqχpbq
`

1` 1
4b

˘

1` τpbq
´

1` τpbq
8b2

¯´

1´ χpbq
4b

¯´1

1

χpbq2
δs
rσi

min
tPJs`1,rK

σt ` σli
rσi

ě
1´ 4

15ξpbqχpbq
`

1` 1
4b

˘

1` τpbq
´

1` τpbq
8b2

¯´

1´ χpbq
4b

¯´1

1

χpbq3
`

1` 1
4b

˘

δs
rσi

:“ νpbq
δs
rσi
,

where the last inequality follows from (120).
Comparing (123) and (125), together with the observation

1´ 4
15ξpbqχpbq

`

1` 1
4b

˘

χpbq3
`

1` 1
4b

˘ ě νpbq

for b ě 2 (checked via Mathematica), we conclude that

min
tPJ1,k´1KYJs`1,rK

ˇ

ˇ

ˇ

ˇ

b

1` βprλiq2σ2
t ˘ |αp

rλiq|σt

ˇ

ˇ

ˇ

ˇ

ě νpbq
mintδk´1, δsu

rσi
. (125)

For the case when i P Jr ` k0, r ` sK and rλi “ ´rσi´r. Use the observation

that αprλiq „ ´αprσi´rq and βprλiq „ ´βprσi´rq from the definitions (32). A simple
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modification of the previous proof shows that

min
tPJ1,k´1KYJs`1,rK

ˇ

ˇ

ˇ

ˇ

b

1` βprλiq2σ2
t ˘ |αp

rλiq|σt

ˇ

ˇ

ˇ

ˇ

ě νpbq
mintδk´1, δsu

rσi´r
. (126)

Step 3. Combining the bounds above. With the estimates deduced in the previous
two steps, we are in a position to bound }UT

J rui}. For i P Jk0, sK, plugging (117)
and (125) and into (113), we find that

}UT
J rui} ď

b

pb´ 1qνpbq

η

mintδk´1, δsu
.

Finally, for simplicity, we employ the following bound

b

pb´ 1qνpbq
ă 3

pb` 1q2

pb´ 1q2

for b ě 2 (checked via Mathematica). We arrive at

}UT
J rui} ď 3

pb` 1q2

pb´ 1q2
η

mintδk´1, δsu
.

Likewise, for i P Jr ` k0, r ` sK, using (118) and (126), we also get

}UT
J rui} ď 3

pb` 1q2

pb´ 1q2
η

mintδk´1, δsu
.

This completes the proof.

Appendix D. Proof of Theorem 29

This section is devoted to the proof of Theorem 29. For convenience, denote

M :“ 2bp
?
N `

?
nq.

Note that the assumptions of Theorem 29 guarantees that for any z P Sσj
(1 ď j ď

r0), |z| ě Repzq ě σj ´ 20χpbqηr ě σj ´ 20χp2qηr “ σj ´
45
2 ηr ąM .

We start with some reduction of the proof. First, note that if σj ą n2{2 for

1 ď j ď r0, then by Lemma 31, with probability at least 1´ pN ` nq´1.5r2pK`4q,

|rσj ´ σj | ď ηr.

Since ϕpzq “ pz ´ tr IdGpzqqpz ´ tr IuGpzqq,

|ϕprσjq ´ σ
2
j | “

ˇ

ˇ

rσ2
j ´ σ

2
j ´ rσj trGprσjq ` ptr IuGprσjqqptr IdGprσjqq

ˇ

ˇ

ď ηrprσj ` σjq ` rσj |trGprσjq| ` |tr IuGprσjq|
ˇ

ˇtr IdGprσjq
ˇ

ˇ .

Note that by Weyl’s inequality, rσj ě σj ´ }E} ě maxtM ` 80bηr, n2{2u ´ 2p
?
N `

?
nq ěM by the suppositions on N,n. Hence, by (37),

maxt| trGprσjq|, | tr IuGprσjq|, | tr IdGprσjq|u ď
b

b´ 1

N ` n

rσj
ď 2

N ` n

rσj
.

It follows that

|ϕprσjq ´ σ
2
j | ď ηrprσj ` σjq ` 2pN ` nq ` 4

pN ` nq2

rσ2
j

ď 10ηrprσj ` σjq

by the supposition that σj ą n2{2 and the Weyl’s inequality. In particular, the
conclusion of Theorem 29 holds.
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Consequently, it is enough to examine the scenario where there is a certain
l0 P J1, r0K for which σl0 ď n2{2. We claim that there exists an index i0 P J1, r0K
such that σj ď n3 for j ě i0 and σj ą n3 for j ă i0, and

δi0´1 “ σi0´1 ´ σi0 ě 75χpbqηr.

To determine i0, we propose a simple iterative algorithm: start with σ1. If σ1 ď n3,
set i0 “ 1 and terminate the algorithm, since σ0 “ 8 and δ0 “ 8 by definition.
Assume σ1 ą n3 and evaluate σ2. If σ2 ď n3´75χpbqηr, set i0 “ 2 and exit. Assume
σ2 ą n3 ´ 75χpbqηr and evaluate σ3. We continue this process and terminate the
algorithm with i0 “ k unless

σ1 ą n3, σ2 ą n3 ´ 75χpbqηr, ¨ ¨ ¨ , σk ą n3 ´ 75χpbqηr. (127)

Note that the condition (127) cannot hold for k “ l0 because σl0 ď n2{2 ă n3 ´

75χpbqηr, based on the assumption that p
?
N `

?
nq2 ě 32pK ` 7q logpN ` nq `

64plog 9qr. Therefore, i0 must satisfy i0 ď l0 ´ 1.
We shall fix such an index i0 throughout the rest of the proof. The goal is to

demonstrate that the following holds with a probability of at least 1´10pN`Nq´K :
assume any i0 ď k ď s ď r0 that fulfills mintδk´1, δsu ě 75χpbqηr. For any
j P Jk, sK, there exists j0 P Jk, sK such that rσj P Sσj0

and (41) is satisfied.
Before moving forward with the proof, we review several results and introduce

necessary notations collected from [64]. The proofs of these results are identical to
these in [64], utilizing Lemma 26, and we will not repeat them here.

Lemma 37 (Eigenvalue location criterion, Lemma 21 from [64]). Assume A has
rank 2r with the spectral decomposition A “ UDUT, where U is an pN ` nq ˆ 2r
matrix satisfying UTU “ I2r and D is a 2r ˆ 2r diagonal matrix with non-zero
λ1, . . . , λ2r on the diagonal. Then the eigenvalues of A` E outside of r´}E}|, }E}s
are the zeros of the function

z ÞÑ detpD´1 ´ UTGpzqUq.
Moreover, the algebraic multiplicity of each eigenvalue matches the corresponding
multiplicity of each zero.

Define the functions

fpzq :“ detpD´1 ´ UTGpzqUq, gpzq :“ det
`

D´1 ´ UTΦpzqU
˘

,

where Φpzq is given in (30). Observe that, by Lemma 26, 1{φ1pzq, 1{φ2pzq and
thus Φpzq are well-defined for any |z| ą M . Therefore, f and g are both complex
analytic in the region tz P C : |z| ą Mu. Furthermore, a direct computation using
(34) suggests that the zeros of gpzq are the values z P C which satisfy the equations
φ1pzqφ2pzq “ σ2

l .
Recall from (39) and (32) that

ϕpzq “ φ1pzqφ2pzq “ pz ´ tr IdGpzqqpz ´ tr IuGpzqq.

We use the function

ξpbq “ 1`
1

2pb´ 1q2
. (128)

The subsequent lemma establishes a set of properties exhibited by ϕ within the
complex plane as well as on the real axis.

Lemma 38 (Lemma 22 from [64]). The function ϕ satisfies the following properties.
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(i) For z, w P C with |z|, |w|, |z ` w| ěM ,
ˆ

1´
1

2pb´ 1q2

˙

|z2 ´ w2| ď |ϕpzq ´ ϕpwq| ď ξpbq|z2 ´ w2|. (129)

(ii) (Monotone) ϕ is real-valued and strictly increasing on rM,8q.
(iii) (Crude bounds) 0 ă ϕpzq ă z2 for any z P rM,8q.

Fix an index j P J1, r0K. Since ϕpMq ă M2 and limzÑ8 ϕpzq “ 8, it follows
from the previous lemma that there exists a unique positive real number zj ą M
such that ϕpzjq “ σ2

j . Similarly, if σl ą M for σl ‰ σj , then there exists a unique

positive real number zl with ϕpzlq “ σ2
l so that zj ą zl if l ą j and zj ă zl if l ă j.

For the next result, we define the half space

Hj :“ tz P C : Repzq ě zj ´ 20χpbqηru with χpbq “ 1`
1

4bpb´ 1q
.

Proposition 39 (Proposition 23 from [64]). Under the assumptions of Theorem
5, for every z P Hj,

|z| ě σj ěM.

In particular,

σj ď zj ď χpbqσj . (130)

Proposition 40 (Proposition 24 from [64]). If σj ą
1
2n

2, then |zj ´ σj | ď
3b
b´1

1
n .

We now complete the proof of Theorem 29. Let j be a fixed index in Ji0, r0K.
We will work in the set Hj X Sσj

, where Sσj
is specified in (40). It follows from

Corollary 2.14 in [48] that

|fpzq ´ gpzq|

|gpzq|
ď p1` εpzqq

2r
´ 1, (131)

where

εpzq :“
›

›

›

`

D´1 ´ UTΦpzqU
˘´1

›

›

›

›

›UTpGpzq ´ ΦpzqqU
›

› .

The next result facilitates the comparison of the numbers of zeros of f and g
inside a region and will be used repeatedly in the later arguments.

Lemma 41. For any region K Ă C with closed contour BK, if εpzq ď 0.34
r for all

z P BK, then the number of zeros of f inside K is the same as the number of zeros
of g inside K.

Proof. Continuing from (131), we find that

|fpzq ´ gpzq|

|gpzq|
ď

ˆ

1`
0.34

r

˙2r

´ 1 ď e0.68 ´ 1 ă 1 (132)

for each z P BK. Therefore, by Rouché’s theorem, we conclude that the numbers of
zeros of f and g inside K are the same. �

In the remaining of the proof, we work on the event

F :“

"

max
zPD

|z|2
›

›UT pGpzq ´ ΦpzqqU
›

› ď η

*

X

#

max
lPJ1,r0K:σlą

1
2n

2
|rσl ´ σl| ď ηr

+

,

(133)
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where D “ tz P C : 2bp
?
N `

?
nq ď |z| ď 2n3u. By Lemma 28 and Lemma 31, the

event F holds with probability at least 1 ´ 9pN ` nq´K ´ pN ` nq´1.5r2pK`4q ą

1´ 10pN ` nq´K .
We first bound εpzq for z P D. By Proposition 11 from [64],

›

›

›

`

D´1 ´ UTΦpzqU
˘´1

›

›

›
“ max

1ďlďr

σl
|σ2
l ´ φ1φ2|

Q1{2,

where

Q :“ |φ1φ2|
2`

1

2
σ2
l p|φ1|

2`|φ2|
2q`

1

2
σl
“

4|φ1φ2|
2|φ1 ` φ̄2|

2 ` σ2
l p|φ1|

2 ´ |φ2|
2q2

‰1{2
.

Recall χpbq “ 1 ` 1
4bpb´1q . Using (36) from Lemma 26, for z P D, we get |φipzq| ď

χpbq|z| for i “ 1, 2, and

Q ď χpbq4|z|4 ` χpbq2σ2
l |z|

2 ` χpbq2σl|z|
2
b

σ2
l ` 4χpbq2|z|2

ď χpbq4|z|4 ` χpbq2σ2
l |z|

2 ` χpbq2σl|z|
2pσl ` 2χpbq|z|q

ď χpbq4|z|4 ` 2χpbq2σ2
l |z|

2 ` 2χpbq3σl|z|
3

ď χpbq2|z|2
´

χpbq|z| `
?

2σl

¯2

,

and thus
›

›

›

`

D´1 ´ UTΦpzqU
˘´1

›

›

›
ď χpbq|z| max

1ďlďr

σlpχpbq|z| `
?

2σlq

|σ2
l ´ ϕpzq|

.

Hence, we obtain that on the event F ,

εpzq ď max
1ďlďr

χpbq
η

|z|

σlpχpbq|z| `
?

2σlq

|σ2
l ´ ϕpzq|

(134)

for all z P D. Note that Sσj
Ă D for all j P Ji0, r0K.

For each j P Ji0, r0K, we take Cj to be the circle of radius 20χpbqηr centered at
zj and contained in Hj X Sσj . Note that Cj ’s may intersect each other. For any
i0 ď k ď s ď r0 satisfying mintδk´1, δsu ě 75χpbqηr. Let

Kk,s :“ Ysl“kCl.
We now restrict ourselves to values of z contained on BKk,s. The goal is to show

εpzq is small for all z P BKk,s. Continuing from (134), it suffices to show

χpbq
η

|z|

σlpχpbq|z| `
?

2σlq

|σ2
l ´ ϕpzq|

(135)

is small for all 1 ď l ď r.
Fix z P BKk,s. Assume z P Cj0 for some j0 P Jk, sK. Then

|z ´ zj0 | “ 20χpbqηr.

Note that σj0 ě 80bηr. Using (130), we have

|z| ď zj0 ` 20χpbqηr ď χpbq

ˆ

1`
1

4b

˙

σj0 ,

|z| ě zj0 ´ 20χpbqηr ě

ˆ

1´
χpbq

4b

˙

σj0 . (136)

We split the discussion into two cases: |σl ´ σj0 | ď 120ηr and |σl ´ σj0 | ą 120ηr.
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Case 1. For any l P J1, rK satisfying |σl ´ σj0 | ď 120ηr, observe that |z ´ zl| ě
20χpbqηr. In view of (129), , we have

|σ2
l ´ ϕpzq| “ |ϕpzlq ´ ϕpzq| ě

ˆ

1´
1

2pb´ 1q2

˙

|z2l ´ z
2| ě

1

2
|zl ´ z||zl ` z|

ě 10χpbqηr|zl ` z| ě

ˆ

1´
χpbq

4b

˙

σj0 ` σl,

where, in the last inequality, we used

|zl ` z| “ |zl ` zj0 ` z ´ zj0 | ě zl ` zj0 ´ 20χpbqηr

ě σl ` σj0 ´ 20χpbqηr ě

ˆ

1´
χpbq

4b

˙

σj0 ` σl

by (130) and the supposition ηr ď σj0{80b. Combining with (136), we estimate
(135) as follows:

χpbq
η

|z|

σlpχpbq|z| `
?

2σlq

|σ2
l ´ ϕpzq|

ď
1

r

1

10p1´ χpbq
4b q

σl
σj0

χpbq2p1` 1
4b qσj0 `

?
2σl

p1´ χpbq
4b qσj0 ` σl

.

Note that σl ď σj0 ` 120ηr ď p1 ` 120{80bqσj0 ď p7{4qσj0 for b ě 2. Also,
χpbq ď χp2q “ 9{8 for b ě 2. We further obtain that

χpbq
η

|z|

σlpχpbq|z| `
?

2σlq

|σ2
l ´ ϕpzq|

ď
1

r

1

10p1´ 9{64q

7

4

p9{8q3σj0 `
?

2σl
p1´ 9{64qσj0 ` σl

ď
1

r

7

40p1´ 9{64q

p9{8q3

1´ 9{64
ă

0.34

r
.

Case 2. For any l P J1, rK satisfying |σl ´ σj0 | ą 120ηr, we start with

|σ2
l ´ ϕpzq| ě |σ

2
l ´ σ

2
j0 | ´ |σ

2
j0 ´ ϕpzq| “ |σ

2
l ´ σ

2
j0 | ´ |ϕpzj0q ´ ϕpzq|

ě |σl ´ σj0 |pσl ` σj0q ´ 20χpbqξpbqηr|zj0 ` z|.

by (129) and |z ´ zj0 | “ 20χpbqηr. Since

|zj0 ` z| ď 2zj0 ` |z ´ zj0 | “ 2zj0 ` 20χpbqηr

ď 2χpbqσj0 ` 20χpbqηr ď 2χpbq p1` 1{8bqσj0 ď
34

16
χpbqσj0

and |σl ´ σj0 | ą 120ηr, we further get

|σ2
l ´ ϕpzq| ě |σl ´ σj0 |pσl ` σj0q ´ 20χpbq2ξpbq

34

16

1

120
|σl ´ σj0 |pσl ` σj0q

“

ˆ

1´
17

48
χpbq2ξpbq

˙

|σl ´ σj0 |pσl ` σj0q.

Hence, using (136), we get

χpbq
η

|z|

σlpχpbq|z| `
?

2σlq

|σ2
l ´ ϕpzq|

ď
χpbqη

p1´ χpbq
4b qp1´

17
48χpbq

2ξpbqq

σl
σj0

χpbq2p1` 1
4b qσj0 `

?
2σl

|σl ´ σj0 |pσl ` σj0q
.

To continue the estimates, we simply use the fact that χpbq, ξpbq are decreasing.
Thus χpbq ď χp2q “ 9{8 and ξpbq “ 1` 1{p2pb´ 1q2q ď 3{2 for b ě 2. Hence,

χpbq
η

|z|

σlpχpbq|z| `
?

2σlq

|σ2
l ´ ϕpzq|

ď
p9{8q4

55
64 p1´

17
48 p

9
8 q

2 3
2 q

σl
σj0

η

|σj0 ´ σl|
ă 6

σl
σj0

η

|σj0 ´ σl|
.
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If σl ď 2σj0 , then

6
σl
σj0

η

|σj0 ´ σl|
ď 12

η

120ηr
“

0.1

r
.

If σl ě 2σj0 , then σl ´ σj0 ě 0.5σl and

6
σl
σj0

η

|σj0 ´ σl|
ď 12

η

σj0
ď 12

η

160ηr
“

0.075

r
.

Thus, we conclude that

εpzq ď
0.34

r
(137)

for all z P Kk,s. By Lemma 41, the number of zeros of f inside Kk,s is the same as
the number of zeros of g inside Kk,s.

Since mintδi0´1, δr0u ě 75χpbqηr by our supposition, we could take k “ i0 and
s “ r0 and thus Ki0,r0 “ Y

r0
l“i0

Cl. Since g has r0 ´ i0 ` 1 zeros inside Ki0,r0 , it
follows that A` E has exactly r0´ i0` 1 eigenvalues inside Ki0,r0 . More generally,
for any i0 ď k ď s ď r0 satisfying mintδk´1, δsu ě 75χpbqηr, we conclude that the
number of eigenvalues of A ` E inside Kk,s is s ´ k ` 1, the same as the number
of zeros of g inside Kk,s. It remains to show that these eigenvalues are exactly
rσk, ¨ ¨ ¨ , rσs. If this is the case, then for any j P Jk, sK, there exists j0 P Jk, sK such
that rσj P Cj0 and thus

|rσj ´ zj0 | ď 20χpbqηr.

In particular, rσj P Sσj0
. By ϕpzj0q “ σ2

j0
, (129) and (130),

|ϕprσjq ´ σ
2
j0 | “ |ϕprσjq ´ ϕpzj0q| ď 20ξpbqχpbqηr prσj ` χpbqσj0q .

This will complete the proof.
It remains to prove that for any i0 ď k ď s ď r0 satisfying mintδk´1, δsu ě

75χpbqηr, the eigenvalues of A ` E inside Ysl“kCl are exactly rσk, ¨ ¨ ¨ , rσs. We will
do so by proving the following claims hold on the event F (see Figure 1 for an
illustration):

Figure 1. Distinct circles Cj with centers zj on the real line for
i0 ď j ď r0.

Claim 1. For any i0 ď k ď s ď r0 satisfying mintδk´1, δsu ě 75χpbqηr, Ysl“kCl does
not intersect other circles.
Claim 2. A` E has exactly i0 ´ 1 eigenvalues larger than zi0 ` 20χpbqηr.
Claim 3. No eigenvalues of A` E lie between disjoint circles.

For the moment, let us assume these claims are true. Note that rσi0 has to lie
inside one of the Cj ’s (i0 ď j ď r0) because it is the largest eigenvalue of A ` E
that is no larger than zi0 ` 20χpbqηr (due to Claim 2 ) and thus it satisfies rσi0 ą
zr0 ´ 20χpbqηr. Since the number of zeros of gpzq located inside Ki0,r0 “ Y

r0
j“i0

Cj ,
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which is r0 ´ i0 ` 1, is the same as that of fpzq inside Ki0,r0 , we have rσi0 , . . . , rσr0
lie inside Ki0,r0 . The conclusion follows by Claim 1, Claim 3 and the fact that the
number of zeros of gpzq in each Kk,s is the same as that of fpzq.

We start with the proof of the Claim 1. It suffices to show that if |σl ´ σj | ě
75χpbqηr, then Cl and Cj do not intersect. By Lemma 38,

|z2l ´ z
2
j | ě

1

ξpbq
|ϕpzlq ´ ϕpzjq| “

|σ2
l ´ σ

2
j |

ξpbq
ě

75χpbqηr

ξpbq
pσl ` σjq.

Since |z2l ´ z2j | “ pzl ` zjq|zl ´ zj | ď χpbqpσl ` σjq|zl ´ zj | by Proposition 39, we
have

|zl ´ zj | ě
75

ξpbq
ηr, (138)

and thus

distpCj , Clq ě |zl ´ zj | ´ 40χpbqηr ě
75

ξpbq
ηr ´ 40χpbqηr ě

ˆ

75

ξp2q
´ 40χp2q

˙

ηr ą 0.

Next, we prove Claim 2. We split the proof into two cases: i0 “ 1 and i0 ą 1.
Case 1: i0 “ 1. We prove that no eigenvalues of A ` E are larger than z1 `
20χpbqηr. We now take C0 to be any circle with radius 20χpbqηr centered at a

point z0 ą z1 ` 20χpbqηr on the real line inside the region H1 X Ŝσ1
such that

distpz1, C0q ě 20χpbqηr. Here

Ŝσ1
:“ tw P C :| Impwq| ď 20χpbqηr,

2bp
?
N `

?
nq ` 138ηr ď Repwq ď

3

2
σ1 ` 20χpbqηru (139)

is a slight modification of the set Sσ in (40). Note that rσ1 P Ŝσ1
: the upper bound

rσ1 ď
3
2σ1 follows from the Weyl’s inequality and the supposition }E} ď 1

bσ1 ď
1
2σ1;

the lower bound is because it is the largest eigenvalue and rσ1 ě zj ´ 20χpbqηr ě
σj´20χpbqηr for any j P Ji0, r0K due to fact that the number of eigenvalues of A`E
inside Yr0l“i0Cl is r0 ´ i0 ` 1. For z P Ŝσ1

,

2bp
?
N `

?
nq ď |z| ď 40χpbqηr `

3

2
σ2 ď

40χpbq

80b
σ1 `

3

2
σ1 ď

57

32
σ1 ă 2n2,

hence z P D and the conclusion of Lemma 28 holds. In particular, the bound (134)

also holds for z P Ŝσ1
. We show

εpzq ă
1

3r

for all z P C0. The proof is similar to the proof of (137) and we sketch it here.
For any z P C0, from |z ´ z0| “ 20χpbqηr and z0 ´ z1 ą 40χpbqηr, we obtain
|z| ď z0 ` 20χpbqηr and

|z| ě z0 ´ 20χpbqηr ě z1 ` 20χpbqηr ą σ1 ` 20χpbqηr ą σ1.
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Again, by Lemma 38, we see for any 1 ď l ď r,

|σ2
l ´ ϕpzq| “ |ϕpzlq ´ ϕpzq| ě

1

2
|z2l ´ z

2|

ě
1

2
pzl ` RepzqqpRepzq ´ zlq

ě
1

2
pσl ` z0 ´ 20χpbqηrqpz0 ´ zl ´ 20χpbqηrq

ě 10χpbqηrpσl ` z0 ´ 20χpbqηrq. (140)

Plugging these estimates back into (134), we see

εpzq ď max
1ďlďr

χpbq
ησl
σ1

χpbqpz0 ` 20χpbqηrq `
?

2σl
10χpbqηrpz0 ` σl ´ 20χpbqηrq

ă
1

5r
,

where we used the bound χpbqpz0 ` 20χpbqηrq `
?

2σl ď 2pz0 ` σl ´ 20χpbqηrq in
the last inequality.

By Lemma 41, f has the same number of zeros inside C0 as g. As g has no zeros
inside C01, A ` E has no eigenvalues inside C0. Since the circle C0 was arbitrarily
chosen inside this region, we conclude that A ` E has no eigenvalues larger than
z1 ` 20χpbqηr.

Case 2: i0 ą 1. On the event F , we have

max
lPJ1,r0K;σląn2{2

|rσl ´ σl| ď ηr. (141)

Note that σi0´1 ą n3 ą n2. Combining (141), Proposition 40 and

zi0´1 ´ zi0 ě
75

ξpbq
ηr ě

75

ξp2q
ηr “ 50ηr,

which follows from the supposition δi0´1 ě 75χpbqηr and the same argument as
(138), we get

rσi0´1 ě σi0´1 ´ ηr ě zi0´1 ´
3b

b´ 1

1

n
´ ηr ě zi0 ` 50ηr ´

6

n
ą zi0 ` 20χpbqηr.

Hence, A` E has at least i0 ´ 1 eigenvalues larger than zi0 ` 20χpbqηr.
We first consider σi0 ą

1
2n

2. It follows from (141) and Proposition 40 that

rσi0 ď σi0 ` ηr ď zi0 `
3b

b´ 1

1

n
` ηr ď zi0 `

6

n
` ηr ă zi0 ` 20χpbqηr.

This shows that A` E has exactly i0 ´ 1 eigenvalues larger than zi0 ` 20χpbqηr.
Now consider σi0 ď

1
2n

2. By Weyl’s inequality, rσi0 ď σi0 ` }E} ď p1`
1
b qσi0 . If

p1` 1
b qσi0 ď zi0`20χpbqηr, the proof is already done. Now we assume p1` 1

b qσi0 ą

zi0 ` 20χpbqηr. If p1 ` 1
b qσi0 ´ pzi0 ` 20χpbqηrq ă 20ηr, following (130), we have

χpbqσi0 ě zi0 ą p1 ` 1
b qσi0 ´ 20pχpbq ` 1qηr and thus σi0 ă 80bηr pb´1qpχpbq`1q

4b´5 .

Note that pb´1qpχpbq`1q
4b´5 is decreasing for b ě 2 and pb´1qpχpbq`1q

4b´5 ď 17{24. Hence,
σi0 ă 80bηr contradicts the supposition that σi0 ě 80bηr.

It suffices to assume p1 ` 1
b qσi0 ´ pzi0 ` 20χpbqηrq ě 20ηr, which implies that

zi0 ď p1 `
1
b qσi0 ´ 20pχpbq ` 1qηr. To prove rσi0 ď zi0 ` 20χpbqηr, we show that

f has no zeros on the interval pzi0 ` 20χpbqηr, p1 ` 1
b qσi0q. The proof is similar

to the proof of Case 1 when i0 “ 1. We only mention the differences. Define

1This follows from Lemma 38 and the fact that Impϕpzqq ‰ 0 whenever Im z ‰ 0 for all |z| ąM .
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Ŝσi0
as in (139) and the bound (134) also holds for z P Ŝσi0

. The goal is to show
εpzq ă 1{3r for all z P C0, where C0 is any circle with radius 10ηr centered at

a point z0 P pzi0 ` 20χpbqηr, p1 ` 1
b qσi0q inside the region Hi0 X Ŝσi0

such that

distpz0, zi0 `20χpbqηrq ě 10ηr and distpz0, p1`
1
b qσi0q ě 10ηr. If so, by Lemma 41,

f has the same number of zeros inside C0 as g. Note that g has no zeros inside C0
since Impϕpzqq ‰ 0 whenever Im z ‰ 0 for all |z| ąM and zi0´1 ě σi0´1 ´

3b
b´1

1
n ą

n2 ´ 3b
b´1

1
n ą

3
2σi0 ě p1`

1
b qσi0 by Proposition 40. Since C0 was arbitrarily chosen,

A` E has no eigenvalues on pzi0 ` 20χpbqηr, p1` 1
b qσi0q.

It remains to bound εpzq from (134). Note that z0 ´ zi0 ě 10ηr ` 20χpbqηr and
p1` 1

b qσi0 ´ z0 ě 10ηr. For z P C0, from |z ´ z0| “ 10ηr, we get |z| ě z0 ´ 10ηr ě

zi0 ` 20χpbqηr ě σi0 ` 20χpbqηr ą σi0 and |z| ď z0 ` 10ηr ď p1` 1
b qσi0 .

The same arguments as those in Case 1 yield that

max
i0ďlďr

χpbq
η

|z|

σlpχpbq|z| `
?

2σlq

|σ2
l ´ ϕpzq|

ă
1

3r

for any z P C0. We only need to control

max
1ďlďi0´1

χpbq
η

|z|

σlpχpbq|z| `
?

2σlq

|σ2
l ´ ϕpzq|

.

For any 1 ď l ď i0 ´ 1, using similar computation from (140), we get

|σ2
l ´ ϕpzq| ě

1

2
pσl ` z0 ´ 10ηrqpzl ´ z0 ´ 10ηrq.

Plugging in z0 ě zi0 ` 10ηr ` 20χpbqηr ě σi0 ` 10ηr ` 20χpbqηr, we obtain

σl ` z0 ´ 20χpbqηr ě σl ` σi0 ` 20χpbqηr.

From σl ě n3, we see σi0 ď
1
2n

2 ă 1
2σl. This, together with (130) and z0 ď

p1` 1
b qσi0 ´ 10ηr, implies that

zl ´ z0 ´ 10ηr ě σl ´ p1`
1

b
qσi0 ě σl ´

1

2
p1`

1

b
qσl ě

1

4
σl.

Hence, |σ2
l ´ ϕpzq| ě

1
8σlpσl ` σi0 ` 20χpbqηrq and

max
1ďlďi0´1

χpbq
η

|z|

σlpχpbq|z| `
?

2σlq

|σ2
l ´ ϕpzq|

ď max
1ďlďi0´1

χpbq
ησl
σi0

χpbqp1` 1
b qσi0 `

?
2σl

1
8 pσl ` σi0 ` 20χpbqηrqσl

ă 45
η

σi0
ď

45η

160ηr
ă

1

3r

using the assumption σi0 ě 80bηr ě 160ηr and the bound χpbq ď χp2q “ 9{8.
Therefore, εpzq ă 1{3r for all z P C0.

The proof of Claim 3 is similar to the previous argument. Let Cj1 , Cj2 be two dis-
joint circles for j1, j2 P Ji0, r0K. Then |zj1´zj2 | ą 40χpbqηr. Let d :“ distpCj1 , Cj2q ą
0. We show that A ` E has no eigenvalues lying on the real line between Cj1 and
Cj2 . Take any point x on the real line between the two circles so that Cx, the
circle centered at x with radius r :“ 1

10 mintd, 20χpbqηru (say), is inside the region
Hj1 X Sσj1

or Hj2 X Sσj2
, where distpx, Cj1q ą r and distpx, Cj2q ą r. Then using

similar calculations as in the proof of Claim 2, it suffices to show that εpzq ă 1{3r.
The remaining arguments are similar to those in the proof of Claim 2 ; we omit the
details.
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